[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 22, Issue 1 (Spring 2020 2020) ::
علوم زراعی 2020, 22(1): 15-31 Back to browse issues page
Evaluation of genotype × environment interaction in durum wheat (Triticum turgidum var. durum L.) regional yield trials
Reza Mohammadi , Behzad Sadeghzadeh , Malak Masoud Ahmadi
Dryland Agricultural Research Institute, Sararood Branch, Agricultural Research, Education and Extension Organization, AREEO, Kermanshah, Iran
Abstract:   (2443 Views)
The objective of this experiment was to analyze genotype × environment (GE) interaction for grain yield of 20 durum wheat genotypes to identify the yield stability and adaptability of genotypes using GGE biplot method as well as some univariate stability statistics. The genotypes were evaluated in three rainfed stations of Sararood (Kermanshah), Maragheh and Shirvan, Iran under both rainfed and supplemental irrigation conditions in three cropping cycles from 2015 to 2018. Combined analysis of variance showed significant differences among the genotypes, environments and GE interaction effects. The environment effect was accounted for the 81.9% followed by GE interaction for 5.2% and genotype for 2.1% of total sum ofsquare (TSS). The large size of the GE interaction variance relative to genotype, suggests the possible existence of sub-environmental groups and genotypes with high grain yield and specific adaptation. Mean grain yield of genotypes across all environments was 2649 kg.ha-1, and 2212 and 3303 kg.ha-1 under rainfed and supplemental irrigation conditions, respectively. The highest mean yield was observed for breeding line G15 (2622 kg.ha-1) under rainfed conditions, and G3 (3744 kg.ha-1) under supplemental irrigation conditions. The GGE biplot analysis could differentiate environments to sub-environmental groups with top yielding genotypes. According to GGE biplot, breeding lines G14, G15, G8, G16 and G11 were identified as ideal genotypes with high mean grain yield and yield stability performance. Based on stability parameters the high yielding breeding line G14 identified to have the most stable grain yiled. The environments belonged to Maragheh location with higher "discriminativeness and representativeness" ability was found as ideal location for evaluation of winter durum wheat germplasm. The results also showed genetic gains for high grain yield and yield stability for durum wheat breeding program under cold and temperate cold dryland conditions of Iran. 

 
Keywords: Adaptability, Durum wheat, Genotype×environment interaction, GGE biplot andYield stability.
Full-Text [PDF 934 kb]   (778 Downloads)    
Type of Study: Scientific & Research | Subject: Special
Received: 2019/02/26 | Accepted: 2020/05/19 | Published: 2020/05/19
References
1. Able, J., and S. Atienza. 2014. Durum wheat for the future: Challenges, research, and prospects in the 21st century. Crop Pasture Sci. 65: 1-124. [DOI:10.1071/CPv65n1_FO]
2. Balalić, I., M. Zorić, G. Branković, S. Terzić and J. Crnobarac. 2012. Interpretation of hybrid× sowing date interaction for oil content and oil yield in sunflower. Field Crops Res. 137: 70-77. [DOI:10.1016/j.fcr.2012.08.005]
3. Dimitrios, B., G. Christos, R. Jesus and B. Eva. 2008. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE Biplots. Agron. J. 100: 1230-1236. [DOI:10.2134/agronj2007.0363]
4. Eberhart, S. A. and W. A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36-40. [DOI:10.2135/cropsci1966.0011183X000600010011x]
5. Fan, X. M., M. S. Kang, H. Chen, Y. Zhang, J. Tan and C. Xu. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J. 99: 220-228. [DOI:10.2134/agronj2006.0144]
6. Finlay, K. W. and G. N. Wilkinson. 1963. The analysis of adaptation in a plant breeding program. Aust. J. Agric. Res. 14: 742-754. [DOI:10.1071/AR9630742]
7. Francis, T. R. and L. W. Kannenberg. 1978. Yield stability studied in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci. 58: 1029-1034. [DOI:10.4141/cjps78-157]
8. Gabriel, K. R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453-467. [DOI:10.1093/biomet/58.3.453]
9. Gauch, H. G. and R. W. Zobel. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311-326. [DOI:10.2135/cropsci1997.0011183X003700020002x]
10. Lin, C. S. and M. R. Binns. 1988. A method for analyzing cultivar x location x year experiments: a new stability parameter. Theor. Appl. Genet. 76: 425-430. [DOI:10.1007/BF00265344]
11. Nachit, M. M., M. Baum, E. Poreciddu, P. Monneveux and E. Picard. 1998. SEWANA (South Europe, West Asia and North Africa) Durum Research Network. Proceeding of the SEWANA Durum Network Workshop, 20-23 March 1995. ICARDA, Aleppo, Syria.
12. Moslemi, M., M. Roustaii and V. Rashidi. 2012. Evaluation of grain yield and yield components in bread wheat genotypes under different moisture regimes. Seed Plant Improv. J. 28(4): 611-630. (In Persian with English abstract).
13. Nassar, R. and M. Huhn. 1987. Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics 43: 45-53. [DOI:10.2307/2531947]
14. Perkins, J. M. and J. L. Jinks. 1968. Environment and genotype-environmental components of variability. Heredity 23: 339-3256. [DOI:10.1038/hdy.1968.48]
15. Plaisted, R. L. and L. C. Peterson. 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. Am. Pot. J. 36: 381-385. [DOI:10.1007/BF02852735]
16. Pinthus, J. M. 1973. Estimate of genotype value: a proposed method. Euphytica, 22: 121-123. [DOI:10.1007/BF00021563]
17. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
18. Rakshit, S., K. N. Ganapathy, S. S. Gomashe, A. Rathore, R. B. Ghorade, M. V. Nagesh-Kumar, K. Ganesmurthy, S. K. Jain, M. Y. Kamtar, J. S. Sachan, S. S. Ambekar, B. R. Ranwa, D. G. Kanawade, M. Balusamy, D. Kadam, A. Sarkar, V. A. Tonapi and J. V. Patil. 2012. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica, 85: 465-479. [DOI:10.1007/s10681-012-0648-6]
19. Sharma, R. C., A. I. Morgounov, H. J. Braun, B. Akin, M. Keser, D. Bedoshvili, A. Bagci, C. Martius and M. van Ginkel. 2010. Identifying high yielding stable winter wheat genotypes for irrigated environments in Central and West Asia. Euphytica, 171: 53-64. [DOI:10.1007/s10681-009-9992-6]
20. Robins, J. G., B. L. Waldron, K. P. Vogel, J. D. Berdahl, M. R. Haferkamp, K. B. Jensen, T. A. Jones, R. Mitchell and B. K. Kindiger. 2007. Characterization of testing locations for developing cool-season grass species. Crop Sci. 47: 1004-1012. [DOI:10.2135/cropsci2006.09.0619]
21. Rose, I. V. L. W., M. K. Das and C. M. Taliaferro. 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of Bermuda grass. Euphytica, 164: 19-25. [DOI:10.1007/s10681-007-9620-2]
22. Shafii, B., K. A. Mahler, W. J. Price and D.L. Auld. 1992. Genotype- environment interaction effects on winter rapeseed yield and oil content. Crop Sci. 32: 922-927. [DOI:10.2135/cropsci1992.0011183X003200040017x]
23. Shukla, G. K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29: 237-245. [DOI:10.1038/hdy.1972.87]
24. Wricke, G. 1962. Uber eine methode zur refassung der okologischen streubretite in feldversuchen, Flazenzuecht 47: 92-96.
25. Yan, W., L. A. Hunt, Q. Sheng and Z. Szlavnics. 2000. Genotype evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597-605. [DOI:10.2135/cropsci2000.403597x]
26. Yan, W. and M. S. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. CRC Press, Boca Raton, FL. [DOI:10.1201/9781420040371]
27. Yates, F. and W. G. Cochran. 1938. The analysis of groups of experiments. J Agric. Sci. 28: 556-580. [DOI:10.1017/S0021859600050978]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi R, Sadeghzadeh B, Ahmadi M M. Evaluation of genotype × environment interaction in durum wheat (Triticum turgidum var. durum L.) regional yield trials. علوم زراعی 2020; 22 (1) :15-31
URL: http://agrobreedjournal.ir/article-1-964-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (Spring 2020 2020) Back to browse issues page
نشریه علوم زراعی ایران Iranian Journal of Crop Sciences
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645