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Genomic selection for grain yield in maize (Zea mays L.) genotypes under non-
stress and phosphorous deficiency stress conditions

Gholamiasl, M.%, Darvishzadeh, R.%, Fayaz Moghaddam, A.2 and Alipour, H.3
ABSTRACT

Gholamiasl, M., Darvishzadeh, R., Fayaz Moghaddam, A. and Alipour, H. 2025. Genomic selection for grain yield im maize
(Zea mays L.) genotypes under non-stress and phosphorous deficiency stress conditions. Iranian Journal of Crop Sciences. 26(1):
369-389. (In Persian).

Introduction: Maize is the third most important grain crop in the world for food and feed and high grain and biomass
production is of importance to ensure food supply and security. Phosphorus deficiency stress in the soil reduces the root
access to phosphorus, resulting in disrupttion of photosynthesis and reduction in plant performance. Due to the lack of
availablity of adequate phosphorus for plants, the production and development of crop cultivars tolerant to phosphorus
deficiency is very important objective in crop breeding programs. Since phenotypic selections are time-consuming with
low efficiency, genotypic selections have been proposed as an alternative approach. In genomic selection, with the help of
genome wide markers, the breeding value is estimated and selections are facilitated (Robertsen et al., 2019).

Materials and Methods: In this experiment, 93 maize genotypes were evaluated for grain yield using completely
randomized design with three replications under non-stress and phosphorus deficiency treatments in potted conditions
in an open area in Urmua University, Iran during the spring of 2022. The molecular profile of maize lines was
prepared with SNP markers. The genomic breeding value for the yield was estimated with different statistical methods
such as Genomic Best Linear Unbiased Prediction (GBLUP), Ridge Regression Best Linear Unbiased Prediction
(rrBLUP), Bayesian Rigde regression, bayes A, bayes B, and bayes C. Correlation criteria was used to select the best
model. According to the results, a high correlation was observed between the estimated breeding values obtained from
rrBLUP and GBLUP and seed yield under both non-stress and phosphorus deficit stress conditions. Therefore, these
methods were the best for predicting genomic breeding value (Estimated Genomic Breeding Values; EGBVS) in both
conditions.

Results: Analysis of variance showed significant differences among maize genotypes for grain yield under both non-stress
and low phosphorus stress conditions, indicating genetic variation in the studied maize genotypes for grain yield. Genetic
variation in maize genotypes plays vital role in enhancing phosphorus use efficiency and grain yield under phosphorus deficit
conditions. In predicting genomic breeding values for grain yield by using various statistical models under both non-stress
and phosphorus deficiency stress conditions, high correlation coefficient was observed between the estimated breeding
values by using Ridge Regression Best Linear Unbiased Prediction (rrBLUP) and Genomic Best Linear Unbiased Prediction
(GBLUP) with grain yield in both conditions. Therefore, these methods are the best approaches for predicting genomic
breeding values (EGBV) in both conditions. Based on the best methods, Ma064 had the highest genomic breeding value
under non-stress conditions, while Ma022 had the highest genomic breeding value under phosphorus deficit conditions.
Based on the results of factor analysis on genomic breeding values estimated by using statistical models, under non-stress
conditions, the models were grouped into four main components, and under phosphorus deficiency stress conditions, they
were grouped into three main components. Cluster analysis divided maize genotypes into three groups. The first group
showed high breeding values and grain yield under both non-stress and phosphorus deficiency stress conditions. In the
genome-wide association analysis for grain yield under non-stress and phosphorus deficiency stress conditions, four and five
SNP markers were identified using the MLM method, respectively. Gene ontology analysis was performed for the gene
associated with the identified SNPs, and the relationships of the genes were examined in the KEGG database. The pathways
of Proteasome, Steroid biosynthesis, Ribosome, Porphyrin metabolism, and ABC transporters were identified to be
associated with significant SNPs that potentially play a role in controlling grain yield under stress conditions. The genes
located in these pathways were found on chromosomes 1, 2, 6, and 8.

Conclusion: In phosphorus deficiency stress conditions, the plant's roots have less access to phosphorus,
consequently, photosynthesis and transpiration processes are affected, and ultimately leading to a significant decrease
in plant performance. This issue was confirmed by comparing maize genotypes performance under non-stress and
phosphorus deficiency conditions. Based on the coefficient of variation (CV), high variation was observed among the
maize genotypes, and the genotypes under stress conditions exhibited different responses and showed high variability.
Based on the results of genomic selection study, the Ridge Regression Best Linear Unbiased Prediction (rrBLUP) and
Genomic Best Linear Unbiased Prediction (GBLUP) were the best methods for predicting genomic breeding values
under both non-stress and phosphorus deficiency stress conditions. To identify the genes involved in controlling grain
yield, the sequences of significant SNP were aligned againest the maize genome. Based on the gene ontology studies
for potential genes, Proteasome, Steroid biosynthesis, Ribosome, Porphyrin metabolism, and ABC transporters
pathways were identified to controlling the trait. The results of this experiment can be useful in selecting parental lines
as well as effective genes for manipulation in maize breeding programs.
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Table 1. Characteristics of maize genotypes used in the experiment

< o3 sl s oy 3L 55 Jome < o3 sbas 5 o 28l 5 Jous
Code Maize genotypes Reference Code Maize genotypes Reference
Ma001 P3L2 Kermanshah szt s Ma051  9/K19/1 Mashhad gl
Ma002 P11L2 Kermanshah szt s Ma052 3/K19/1 & (K19/1*/1392) Mashhad A
Ma003 P15L16Kahriz Kermanshah szt s Ma053  25*/89 Mashhad gl
Ma004 P9L3Kahriz Kermanshah szt s Ma054 2/ K19/1 & (K19/1) Mashhad A
Ma005 P13L2 Kermanshah szt s Ma055  K3640/S /55-N Mashhad gl
Ma006 P19L7Kahriz Kermanshah .k s Ma057  20*/1389 Mashhad gl
Ma007 P6L1 Kermanshah szt s Ma060  S2/ QPM/ SUKMA (55! Mashhad KVER
Ma008 P19 L3Kahriz Kermanshah oLzt s Ma062  6*/88 Mashhad gl
Ma009 P14L1Kahriz Kermanshah szt s Ma064 4/ K19/1 Mashhad gl
Ma010 P11L7 Kermanshah .k s Ma065 66*/1388 Mashhad gl
Ma011 P14L2 Kermanshah .k s Ma066  48*/1390 Mashhad gl
Ma012 P10L5 Kermanshah .k s Ma072 K166 B/89 & (14* K166 B/1390) Mashhad At
Ma013 P1L4 ~ 5 ITees Kermanshah .k s Ma073  K18-B/1392 4 ;1 Mashhad gl
Ma014 P11L6 Kermanshah .k s Ma074  7/K19/1 Mashhad gl
Ma015 P13L3 Kermanshah .k s Ma075  23*/89 Mashhad gl
Ma016 P16L4Kahriz Kermanshah .k s Ma076  70*/1388 Mashhad gl
Ma017 P3 L4Kahriz Kermanshah .k s Ma077  10/K19/1 Mashhad gl
Ma018 P1 L5Kahriz Kermanshah .k s Ma079  138*/89 Mashhad gl
Ma019 P19L5Kahriz Kermanshah .k s Ma080 K19 */1392 4,3 Mashhad gl
Ma020 P15L14 Kermanshah .k s Ma083  1*/89 ;. 3> Mashhad gl
Ma021 P16L6Kahriz Kermanshah .k s Ma085  1390/Popcorn- 53 or 54 Mashhad At
Ma022 P15L4 Kermanshah .k s Ma089  172*/89 Mashhad gl
Ma023 P11 L9 Kermanshah .k s Ma091  8/K19/1 Mashhad gl
Ma024 PIL6 Kermanshah .k s Ma096  67*/88 Mashhad gl
Ma025 P13L1 Kermanshah Lk s Ma098  1387/193/ chase*/S2 Mashhad gl
Ma026 P10L7 Kermanshah Lk s Mal00 36-N/88-K3653/2 Mashhad gl
Ma027 P16L12Kahriz Kermanshah Lk s Mal04 Linel -
Ma028 P10L9 Kermanshah sk s Mal05 Line2 -
Ma030 MO17 Karaj =5 Mal06 Line3 -
Ma031 OH43/1- 42 Karaj =5 Mal07 Line4 -
Ma032 K1264/5-1 Karaj =5 Mal08 Line5 -
Ma033 R59 sl Karaj =5 Mal09 Line6 -
Ma034 K615/1 Karaj =5 Mall0 Line7 -
Ma035 B73 Karaj =5 Malll Line8 -
Ma036 OH43/1-42 ., Karaj =5 Mall2 Line9 -
Ma037 R59 (s, Karaj =5 Mall3 Linel0 -
Ma038 W37A Karaj =5 Mall4  Linell -
Ma039 R319 Karaj =5 Mall5 Linel2 -
Ma040 R59 Karaj =5 Mall6 Linel3 -
Ma042 W153R Karaj =5 Mall7 Linel4 -
Ma043 K1533 Popcorn Karaj =5 Mall8 Linel5 -
R59xR319 . .
Ma044 _ Karaj s Mall9 Linel6 -
(S SR TV ol S s o 50ke
Ma045 B73(RFC OR CMS) Karaj =5 Mal20 Linel? -
Ma046 1264/1 Karaj =5 Mal2l Linel8 -
Ma048 ZK472221 Karaj =5 Mal22  Linel9 -
Ma049 K1263/1/1388 Mashhad g Mal23 Line20 -
Ma050 4*/89 Mashhad g
Yvy
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Table 2. Physical and chemical properties of the soil used in the experiment

N s ST s JTesle
S S s Lime Silt  Sand Clay Organic carbon Organic matter
EC (dS.m™) pH (%)
0.78 7.92 315 30 30 40 0.74 1.28
= S o T %) Sl
K P Cu Mn Fe Zn Soil texture
: PR
(mg.kg™) C‘,j;y e
102 7.24 1.3 10.3 11 0.11

Table 3. Meteorological information of the experiment site
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Month s Airtemperature (°C) Min. Max. (mm) Sunny hours RH (%)

Sep. el 16.0 5.7 195 2.1 9.2 52

Oct. ™ 12.3 3.4 18.8 28.9 5.8 58.3

Nov. ol 2.6 -4.7 7.4 23.7 6.7 66.7

Dec. 5T 4.5 -4.6 9.4 11.1 5.6 59.5

Jan. ©> 3.1 -5.3 7.4 80.9 5.8 63.4

Feb. oo 9.4 0.3 13. 29.1 5.8 56.9

Mar. NUP| 13.6 2.6 20.3 56.7 7.9 49.9

Apr. sy 14.7 5.2 213 133 6.2 61.2

May — cigus) 215 9.1 30.4 272 102 50.7

Jun. sls & 28.6 13.9 37.9 0 12.0 31.9

Jul. 5 27.7 13.5 36.4 0 11.3 39.8

Aug. sls e 23.8 10.5 33.8 08 110 38.2

Mean Lo 14.8 4.1 214 3931 8.1 52.4
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Table 4. The results of estimating the genomic breeding value for grain yield of maize genotypes using

statistical models under non-stress conditions

55 el il Saer

Jol S oSl e Ol Sl als Shee LoddsyT
Methods b sy Minimum Maximum Mean SD CcVv Correlation
Ridge regression 220 O S 57.5 175.4 113.6 33.3 29.3 0.93
GBLUP e 56.6 176.5 113.6 334 29.4 0.93
Bayesian ridge regression ;. 055, 537.8 1365.7 874.1 1784 20.4 0.06
Bayes A A 3772 1363.3 7477 1942 25.9 -0.09
Bayes B B; 3139 1446.5 693.0 183.1 26.4 0.11
Bayes C C,. 3137 1313.3 680.5 196.1 28.8 -0.07
Grain yield wls 5 Slas 34.7 239.0 113.6 47.1 41.5 1.00
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Table 5. The results of estimating the genomic breeding value for grain yield of maize genotypes using

statistical models under phosphorous deficiency stress conditions
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Bayesian ridge regression ;. 055, 2251 617.1 381.0 80.8 21.2 0.03
Bayes A A 2131 606.4 389.7 81.8 21.0 0.12
Bayes B B, 2013 535.7 3340 785 235 -0.15
Bayes C C;, 1281 669.7 2994 957 319 -0.02
Grain yield 415 3 Slas 23.9 144.9 76.3 32.6 42.7 1.00
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Fig. 1. Correspondence of genomic breeding values against grain yield of maize genotypes under non-

stress conditions
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Table 6. Factor analysis for estimated breeding values for grain yield with statistical indices in maize genotypes under non stress and phosphorous deficiency stress

conditions
O 05k S 35S 25 &S e bl
Non-stress Phosphorous deficiency stress Commnuality
bl sl asls Jsl Jele e dele sl il bl S pha uibsls Jsl Jele £33 Jale poe Jole
Statistical indices Factor1  Factor2 Factor3  Factor 4 Commnuality  Factor1 Factor2  Factor 3
Grain yield 4ls 3 Shes 0.96 0.128 0.037 0.018 0.941 0.963 0.076 0.051 0.935
BayesA -0.203 0.764 0.152 0.172 0.677 0.124 -0.312 0.835 0.809
BayesB 0.102 -0.070 0.133 0.968 0.971 -0.273 0.602 0.215 0.483
BayesC -0.157 0.766 -0.290 -0.047 0.697 -0.072 0.632 0.456 0.612
Bayesian ridge regression 0.015 0.123 0.947 -0.182 0.945 0.033 0.652  -0.241 0.484
GBLUP 0.988 0.079 -0.038 -0.042 0.986 0.988 0.077  -0.026 0.982
rrBLUP 0.987 0.080 -0.041 -0.046 0.985 0.986 0.079  -0.028 0.979
Eigen value o513 2.950 1.218 1.025 1.007 2971 1.301 1.013
. o s e gy gy 59.55 74.20 88.58 42.44 61.03 75.50
Cumulative percentage of variance
AN
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Table 7. SNP markers identified for grain yield of maize genotypes under non stress and phosphorous deficiency stress by Mixed Linear Model (MLM)
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