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Drought stress memory and its relationship with morpho-physiological,
biochemical and molecular changes in crop plants
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Drought stress memory and its relationship with morpho-physiological,
biochemical and molecular changes in crop plants

Saeidnia, F.! and Hamid, R.2

ABSTRACT

Saeidnia, F. and Hamid, R. 2024. Drought stress memory and its relationship with morpho-physiological, biochemical and
molecular changes in crop plants. Iranian Journal of Crop Sciences. 26(1): 71-93. (In Persian).

The uneven distribution of rainfall caused by global warming will lead to more irregular and multiple abiotic
stresses such as heat, drought, cold stresses or the combination of them. Developing stress-tolerant plants is the
purpose of most plant breeders to develop cultivars that are high yielding with yield stability. Plant responses to
drought stress have been evaluated in many different species, but the occurrence of stress memory as well as the
potential mechanisms for memory regulation have not yet been well described. It has been observed that plants
are able to memorize past events in a way that adjusts their response to new challenges without changing their
genetic constitution. This ability could enable the plants to face upcoming challenges. A better understanding of
the mechanisms associated with the stress memory leading to change in gene expression and how they link to
physiological, biochemical, metabolic and morphological changes would initiate diverse opportunities to plant
breeders to develop stress-tolerant genotypes through molecular breeding or biotechnological methods. In this
perspective, this review discusses different types of stress memory in crop plants and gives an overall view using
general examples. Moreover, with focusing on drought stress, we demonstrate coordinated changes in epigenetic
and molecular gene expression control mechanisms, the associated transcription memory responses at the
genome level and integrated biochemical and physiological responses at cellular level following recurrent
drought stress exposures. Indeed, coordinated epigenetic and molecular changes of expression of gene networks
link to biochemical and physiological responses that facilitate acclimation and survival of crop plants during

repeated drought stress.
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Fig. 4. Interactions between the control of gene expression during repeated exposure and stress responses of
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Inheritance of epigenetic regulators like histone modifications and DNA methylation and the alteration of regulatory RNAs
and transcription factors affect the expression of genes, thereby causing changes in phenotypes of the plant
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Table 1. The identified genes involved in stress memory in plants

Genes by sl Plant oL

Stress type 554

Reference e

AP2/ERF

Arabidopsis thaliana

Dehydration stress

Ding et al., 2013; Ding et al., 2014

bHLH Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
homeo_ZIP Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
MYB Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
ZF Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
CCAAT Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
b_ZIP Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
WRK Arabidopsis thaliana Dehydration stress  Ding et al., 2013; Ding et al., 2014
AP2 Glycine max L. Drought stress Kim et al., 2020

NAM Glycine max L. Drought stress Kim et al., 2020

MYB Glycine max L. Drought stress Kim et al., 2020

bzIP_1 Glycine max L. Drought stress Kim et al., 2020

WRKY Glycine max L. Drought stress Kim et al., 2020

RD29B Arabidopsis thaliana  Drought stress Liuetal., 2014

RAB18 Arabidopsis thaliana  Drought stress Liuetal., 2014

H3K4me3 Arabidopsis thaliana  Drought stress Liu et al., 2014;

PRC2 Arabidopsis thaliana Drought stress Borg et al., 2020
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