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The role of functional genomics studies in identifying the molecular responses of
crop plants to abiotic stresses

Darvishzadeh, R.! and H. Broushan?

ABSTRACT

Darvishzadeh, R. and H. Broushan. 2023. The role of functional genomics studies in identifying the molecular responses of
crop plants to abiotic stresses. lIranian Journal of Crop Sciences. 25(3): 207-232. (In Persian).

Plants are exposed to various environmental stresses during their life cycle. Considering the essential role of
crop plants in the production of food, fodder, oil and biofuels, it is important to evaluate their responses to
environmental stresses. Plants have developed complex molecular systems to respond and adapt to
environmental stress conditions such as drought, salinity, cold and heat during evolutionary processes. The
response to abiotic stress is significantly different in species and even in different cultivars of the same species.
Identification of plant responses to abiotic stresses has caused a great revolution in post-genome era.
Physiological and molecular analyses have helped to better identify plant responses, and in this regard,
Arabidopsis genome sequencing has played an important role. Quantitative phenotyping system of plants using
imaging technology and its combination with information technology has facilitated the understanding of
complex responses of plants to abiotic stresses. Studies on new regulatory mechanisms including use of small
RNA molecules, chromatin modulation and genomic DNA modification, have enabled researchers to recognize
complex plant molecular systems in response to abiotic stresses. Researchers have found that plants have types
of sensors and signaling systems to respond to environmental changes and stresses. The molecular patterns of
these signals are transmitted for the proper induction of the downstream molecular events. Obtaining necessary
information related to DNA function at gene levels, RNA transcription and protein products, requires the use of
various functional genomics methods such as next generation sequencing and genome editing, with large
amounts of data. These data, which are essential information for all genes, including gene products and their
functions, transcription levels, cis-regulatory elements and alternative splicing patterns, are obtained as a result
of accessing the complete genome sequence. With progress in functional genomics methods, many genes related
to stress tolerance can be identified and used to improve the level of tolerance of crops to environmental stresses.
In this article, studies related to functional genomics for identification of complex response systems in crop

plants that cause adaptation to abiotic stresses have been reviewed.
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Fig. 2. Sensing system and cellular signal transduction of plants in response to drought stress (Shinozaki and

Yamaguchi-Shinozaki, 2022)
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Fig. 3. Mechanisms of salinity tolerance in plants (Shinozaki and Yamaguchi-Shinozaki, 2022)
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Fig. 4. Phosphorylation signaling of plants in ABA-dependent and ABA-independent responses under drought

stress conditions (Shinozaki and Yamaguchi-Shinozaki, 2022)
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Fig. 5. Local and intertissue signaling from root to leaf and leaf to leaf in response of plant to drought stress

(Takahashi et al., 2020a)
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Mobile signals caused by hydraulic pressure, ROS/Ca?* waves, peptides and phytohormones mediate inter-tissue and long-
distance communication for drought tolerance. The green arrow shows root to leaf signals such as hydraulic pressure signals,
ROS/Ca?* waves and peptides in water deficit conditions. The orange arrow indicates leaf to leaf signaling of ROS/Ca?*
waves that mediate stomatal closure under stress conditions. The blue arrow also shows the local signals of ROS/Ca?* waves,
peptide or ABA signals that mediate stomatal coductance under stress conditions
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Table 1 Names of genes and effective factors in response and tolerance to abiotic stresses in plants

Abiotic stress o) 8 sl 25 Encoded protein okph ey e p The name of gene O5eb References pla
Inducible genes involved in stress tolerance oS Jox 90 o5 90 B Sy
Drought, Cold L/ Sz Late embryogenesis abundant proteins o olgl Ao 5 0lslp slas LEA Shinozaki and 'Yamaguchi-Shinozaki, 2022
Drought, ABA LS T/ Sz Early responsive to dehydration 1 Clp protease regulatory subunit S 4y g odins gl CIP 555 5 adis doly 55 ERD1 Shinozaki and 'Yamaguchi-Shinozaki, 2022
Heat, Drought S/ S Heat shock protein S b sy HSP Kalaipandian et al., 2023
Drought, Cold, Heat L/ Ses Galactinol synthase S JSYE Gols Urano et al., 2009
Drought, ABA LS T/ S22 GABA decarboxylase Sy Sl 6 5y gaT WE GAD Urano et al., 2009
Drosght, Cold, S ot Responsive o dehydration 29 Y4 S s ik RD29 Shinozaki and Yamaguchi-Shinozaki, 2022
Drought, ABA LS T/ Sz Responsive to dehydration 22 Unidentified seed protein YY S 4 oins el b6 (6 dh 50 5 RD22 Shinozaki and 'Yamaguchi-Shinozaki, 2022
Transcription factors 99y Jolas
Heat L5 Heatshock factor Al Al ) S 5o e HSFA1 Kalaipandian et al., 2023
Drought, ABA LS T/ S22 Homeobox 6 TF 7 oShgagn w5y, Jole HB6 Shinozaki and Yamaguchi-Shinozaki, 2022
Cold L. DRE-binding protein 1/ C-repeat binding factor DRELs Juze 55 /CRT 4 fae Jole DREB1/CBF Shinozaki and Yamaguchi-Shinozaki, 2022
Drought, Heat L5 /%, DRE-binding protein 2 DRE24 |z 55, DREB2 Shinozaki and Yamaguchi-Shinozaki, 2022
Heat, Salinity G/ WRKY TF WRKY s 535 ol WRKY Li etal., 2020; Chen et al., 2012
Drought, ABA LS T/ S22 ABRE-binding protein TF eSS T 4 0 ey i & Juzie s 535 Jole AREB/ABF Shinozaki and Yamaguchi-Shinozaki, 2022
Drought, ABA keSS T/ S22 MYCrelated TF 2 MYC2 Ls o s 55, Jale AtMYC2 Shinozaki and Yamaguchi-Shinozaki, 2022
Drought, ABA LS T/ S22 MYB related TF 2 MYB2l Ls o s 53, ke AtMYB2 Shinozaki and Yamaguchi-Shinozaki, 2022
Drought St NACTF NAC 53, ol NAC/RD26 Shinozaki and 'Yamaguchi-Shinozaki, 2022
Heat LS NACTF NAC, o 53, ol TaNAC21 Kalaipandian et al., 2023
Drought S Zn finger-homeodomain TF 7S g3 ga g s 595 oo ZF-HD Wohlbach et al., 2008
Drought e TCP family 13 TF TCPosl g s 535 ke TCP13 Urano et al., 2022
ER M5t TLs bZIP TF in ER stress response oy T 25 & okins el (53U, o s 5 s 505 ol bZIP60 Fuijita et al., 2018
ER ~MsuT&s bZIP TF in ER stress response oDy g bT S 25 4y 0k ey (S5 s s 5 (s 595 ol bZIP17/28 Kim etal., 2018
ER ~MsuT&s TATADbinding factor 12b SUBG & o 4, haze12D) fule TAF12b Kim etal., 2022
Cold L, Calmodulin-binding TF A 5350 4 Juzte s 555 Jole CAMTAL Kidokoro et al., 2022
Stress-responsive signaling factors LS 9 oS Frwb lwpls elge
Salinity <5+ SNF-related protein kinase 1 V (6 i 3Lk Jas 0V SUS 055, SnRK1 Coello etal., 2011
Drought, ABA eSSl / Sz SNF-like protein kinase 2 V(6 e 58l b Las o Y SUS 4l 55 SnRK2 Soma et al., 2021
Drought, ABA LS T/ Sz Protein phosphatase 2C 2C bls 55 PP2C Yoshida et al., 2021
ABA 4leSs 5T START-type ABA receptor o § 5 5 S T 0, S PYR/PYL/RCAR Park etal., 2009
Drought, ABA AT/ S22 MAPK kinase kinase (MAPKKK) 0550 b okaJlob LSTLSTUS 55 Raf-like kinase Soma et al., 2021
Drought Se= VARICOSE mRNA decapping (55519 MRNA Ll o 5T VCS Soma et al., 2021
Dry S Casein kinase 1 VS 8 CK1 Kalaipandian et al., 2023
Drought, Cold, e
ABA Al T/ b/ Sz Cal*-dependent protein kinase el s U5 5 CPK Somaetal, 2021
Drought, Salinity $ass/ S Arabidopsis histidine kinase 1 e 93TV LSy ATHKI/AHK1 Wohlbach et al., 2008
Drought, Cold L/ Sz MID1 homolog of yeast Ca2+-permeable stretch-activated channel oS 30 BB 228" Lo 5 edsiJleb JUS - jasee MID1S 4o gn MCA1 Shinozaki and Yamaguchi-Shinozaki, 2022
Drought, Salinity soss/ e Hyperosmolarity induced Ca2+ increase JETS) ZOON RS - R g PO | OSCA1 Murthy et al., 2018; Murthy et al., 2018
ROS O3STdw sas & Hz20z-induced Ca?* increase ST 0358508 31 (5 aedS” O 2ol 1 HPCA Wuet al., 2020
ROS 0581 e & Respiratory burst oxidase D o et DtST RBOHD Wauet al., 2020
Dry Sz Clavata3 related peptide 25 o odi bl b as 0 YO Ay CLE25 Takahashi et al., 2020a
Salinity soss  Na“/H*antiporter Na'/H 5, 5 =T SOS1 Brini and Masmoudi, 2012
Salinity 55 Ca?* binding protein rendS O 4 0k 3 Jute 55 SOS3 Gong et al., 2000
Transporters and enzymes related to abscisic acid Al T b d25 g0 (S0 5T 9 > [B6
ABA synthesis &S e 5w 9-Cis-epoxycarotenoid dioxygenase 305081633 553" oS g~y 4 NCED Finkelstein, 2013
ABA degradation AleSs sl 4 2 PA50 cytochrome oxidase P450 ;15105 S 5w CYP707A Finkelstein, 2013
ABA transport Al T Jist - ATP-binding cassette transporter and( 5 53T 4 e CulS” J36 ABC Kuromori et al., 2022
ABA transport AleSs 5T Jlisl Nitrate/peptide transporter S/ A J36 NPF Shimizu etal., 2021
ABA transport 2leS 5T Jiisl Detoxification efflux carrier oI5 0L o 3 DTX Shinozaki and Yamaguchi-Shinozaki, 2022
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Fig. 7. Approaches to the mining of genes associated to abiotic stresses, functional validation of candidate genes

and methods that can use these functionally validated genes to improve crops tolerance to environmental stresses
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