:: دوره 22، شماره 2 - ( تابستان 1399 ) ::
جلد 22 شماره 2 صفحات 211-198 برگشت به فهرست نسخه ها
کمی ‌سازی الگوی رویش علف‌های هرز در مزرعه کلزا (.Brassica napus L) در شرایط آب و هوایی خوزستان
احمد زارع ، الهام الهی فرد ، زهرا تکلیفی ادنانی ، احمد روستایی
دانشکده کشاورزی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
چکیده:   (2037 مشاهده)
به منظور کمی‌سازی الگوی رویش علف­های­هرز در مزرعه کلزا، آزمایشی در سال زراعی 1397-1396 در دو مکان، 40
 کرت آزمایشی در دانشگاه کشاورزی و منابع طبیعی خوزستان و 30 مزرعه در مزارع کلزای شهرستان باوی اجرا و طی آن
 علف­های هرز به صورت هفتگی پایش، شمارش و ثبت گردید.
بر اساس نتایج سه الگوی رویش مربوط به نُه گونه علف­هرز مشاهده شد. دو علف­هرز خردل وحشی (Sinapis arvensis L) و کاهوی وحشی (Lactuca serriola L.) به عنوان علف­های هرز
زود سبز شونده، علف‌هرز شاه افسر (
Melilotus sulcatus Desf.) و اسپرگولاریا (Spergularia marina (L.) Griseb) به عنوان علف‌های هرز دیر سبز شونده و پنج علف‌هرز پنیرک (Malva spp)، چچم (Lolium rigidum Gaudin)، چغندر وحشی
 (Beta vulgaris subsp. maritima (L.) Arcangeli) ، خار مریم (Silybum marianum (L.) Gaertn) و سلمک برگ‌گزنه‌ای (Chenopodium murale L.) به عنوان علف­های هرز سبز شونده حدواسط گروه­بندی شدند.  نتایج نشان داد که کمترین مقدار GDD50  (روز- درجه رسیدن به 50 درصد رویش) (6/323 درجه روز- درجه رشد) مربوط به کاهو وحشی و بیشترین مقدارآن (9/608 روز- درجه رشد) مربوط به اسپرگولاریا بود. در حالی بود که 10 درصد رویش اسپرگولاریا و شاه افسر در 4/362 و 3/426 روز- درجه رشد پیش‌بینی گردید. نتایج الگوی رویش علف­های­هرز در مزرعه کلزا نشان داد که علف­کش­های خاک مصرف باید نیمه عمر بالاتری داشته باشند و استفاده از علف­کش­های پس­رویشی و استفاده از سایر روش­های زراعی مانند رعایت تراکم مناسب بوته با توان رقابتی بالا در مدیریت تلفیقی علف­های هرز مورد توجه قرار گیرند.
واژه‌های کلیدی: روز- درجه رشد، علف‌های هرز دیر سبز شونده، علف‌های هرز زود سبز شونده، کلزا و مدیریت تلفیقی علف‌های هرز.
متن کامل [PDF 818 kb]   (1507 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1398/8/4 | پذیرش: 1399/6/10 | انتشار: 1399/6/10
فهرست منابع
1. Ansari, O., J. Gherekhloo, B. Kamkar and F. Ghaderi-Far. 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Sci. Technol. 44: 1-14. [DOI:10.15258/sst.2016.44.3.05]
2. Bedos, C, M. F. Rousseau-Djabri, B. Gabrielle., D. Flura, B. Durand, E. Barriuso and P. Cellier .2006. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation. Environ. Pollut. 144: 958-966. [DOI:10.1016/j.envpol.2006.01.043]
3. Benech Arnold, R. L., C. M. Ghersa, R. A. Sanchez and P. Insausti. 1990. A mathematical model to predict Sorghum halepense (L.) Pers. Seedling emergence in relation to soil temperature. Weed Res. 30:91-99. [DOI:10.1111/j.1365-3180.1990.tb01691.x]
4. Biancardi, E., L. W. Panella and R. T. Lewellen. 2012. Beta Maritima: The Origin of Beets. New York, NY: Spring. 312. [DOI:10.1007/978-1-4614-0842-0]
5. Cardina, J., C. P. Herms and D. A. Herms. 2011. Phenological indicators for emergence of large and smooth crabgrass (Digitaria sanguinalis and D. ischaemum). Weed Technol. 25: 141-150. [DOI:10.1614/WT-D-10-00034.1]
6. Cardina, J., C. P. Herms., D. A. Herms and F. Forcella. 2007. Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci. 55: 455-464. [DOI:10.1614/WS-07-005.1]
7. Carter, C. T. and I. A. Ungar. 2004. Relationships between seed germinability of Spergularia marina (Caryophyllaceae) and the formation of zonal communities in an inland salt marsh. Ann. Bot. 93: 119-125. [DOI:10.1093/aob/mch018]
8. Corbin, B. R., Jr. M. McClelland., R. E. Frans., R. E. Talbert and D. Horton. 1994. Dissipation of fluometuron and trifluralin residues after long-term use. Weed Sci. 42:438-445. [DOI:10.1017/S0043174500076748]
9. Dorsainvil, F., C. Durr., E. Justes and A. Carrera. 2005. Characterisation and modelling of white mustard (Sinapis alba L.) emergence under several sowing conditions. Eur. J. Agron. 23:146-158. [DOI:10.1016/j.eja.2004.11.002]
10. Elahifard, E. and S. Kheyr Andish. 2016. Influence of burial depth on seedling emergence of wild mustard (Sinapis arvensis), junglerice (Echinochloa colona) and milk thistle (Silybum marianum). J. App. Res. Plant Ecophysiol. 3: 41-52. (In Persian with English abstract)
11. Elkarmi A., R. Abueideh and A. Zaiter. 2009. The growth of Chenopodium Murale irrigated with polluted and unpolluted water: a modeling approach. Aust. J. Basic Appl. Sci. 3: 1827-1837.
12. Forcella, F., R. L. Benech Arnold, R. Sanchez and C. M. Ghersa. 2000. Modeling seedling emergence. Field Crops Res. 67: 123-139. [DOI:10.1016/S0378-4290(00)00088-5]
13. Franke, A. C., N. S. Singh, A. S. Mcroberts, S. Nehra, R. Godara and J. Marshall 2007. Phalaris minor seed bank studies: longevity, seedling emergence and seed productions affected by tillage regime. Weed Res. 47: 73-83. [DOI:10.1111/j.1365-3180.2007.00533.x]
14. Galmés, J., H. Medrano and J. Flexas. 2006. Germination capacity and temperature dependance in Mediterranean species of Balearic Islands. Invest Agrar: Sist Recur For 15:88-95. [DOI:10.5424/srf/2006151-00955]
15. Ghaderi-far, F., J. Gherekhloo and M. Alimagham, 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha. 28: 463-469. [DOI:10.1590/S0100-83582010000300002]
16. Goggin, D. E., S. B. Powles and K. J. Steadman. 2012. Understanding Lolium rigidum seeds: The key to managing a problem weed? Agron J. 2: 222-239. [DOI:10.3390/agronomy2030222]
17. Hartzler, R. G., D. D. Buhler and D. E. Stoltenberg. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578-584. [DOI:10.1017/S0043174500092298]
18. Hermann, K., J. Meinhard, P. Dobrev, A. Linkies, B. Pesek, B. Hess, I. Machackova, U. Fischer and G. Leubner-Metzger. 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid duringthe germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J. Exp. Bot. 58: 3047-3060. [DOI:10.1093/jxb/erm162]
19. Jolley, A. V. and P. K. Johnstone. 1994. Degradation of Trifluralin in 3 Victorian soils under field and laboratory conditions. Aust. J. Exp. Agric. 34: 57-65. [DOI:10.1071/EA9940057]
20. Jursík, M., J. Soukup, V. Venclová and J. Holec. 2003. Seed dormancy and germination of Shaggy soldier (Galinsoga ciliata Blake.) and Common lambsquarter (Chenopodium album L.) Plant, Soil Environ. 49: 511-518. [DOI:10.17221/4186-PSE]
21. Kazerooni Monfared, E., P. Rezvani Moghaddam and M. Nassiri Mahallati. 2012. Modeling the effects of water stress and temperature on germination of Lactuca serriola L. seeds. Intl Res J Appl Basic Sci; 3: 1957-65.
22. Khalaj, H., I. Allahdadi, H. IranNejad., G., A. Akbari., M. MinBashi and M. A. Baghestani. 2012. Using nonlinear regression approach for prediction of cardinal temperature of canola and four common weeds. J. Agro Ecol. 1:21-33.
23. Larsen, S. U. and C. Andreasen. 2004. Light and heavy turfgrass seeds differ in germination percentage and mean germination thermal time. Crop Sci. 44: 1710-1720. [DOI:10.2135/cropsci2004.1710]
24. Letschert, J. P. W. 1993. Beta section Beta: bio geographical patterns of variation, and taxonomy. Dissertation Wageningen Agricultural University Papers 93-1, the Netherlands.
25. Morris, P. C., D. Grierson and W. J. Whttington. 1984. Endogenous inhibitors and germination of Beta vulgaris. J. Exp. Bot. 35:994-1002. [DOI:10.1093/jxb/35.7.994]
26. Myers, M. W., W. S. Curran, M. J. VanGessel, D. D. Calvin, D. A. Mortensen, B. A. Majek, H. D. Karsten and G. W. Roth. 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Sci. 52: 913-919. [DOI:10.1614/WS-04-025R]
27. Okusanya, O. T. and I. A. Ungar. 1983. The effects of time of seed production on the germination response of Spergularia marina. Physiol. Plant. 59: 335-342. [DOI:10.1111/j.1399-3054.1983.tb04211.x]
28. Owen, M. J., P. J. Michael., M. Renton., K. J Steadman and S. B. Powles. 2011. Towards large-scale prediction of Lolium rigidum emergence. I. Can climate be used to predict dormancy parameters? Weed Res. 51:123-132. [DOI:10.1111/j.1365-3180.2010.00832.x]
29. Pourreza, J. and A. Bahrani. 2012. Estimating cardinal temperatures of milk thistle (Silybum marianum) seed germination. American-Eurasian J. Agric. and Environ. Sci. 12: 1030-1034.
30. Scursoni, J. A., R. Benech-Arnold and H. Hirchoren 1999. Demography of wild oat in barley crops: effect of crop, sowing rate and herbicide treatment. Agron J. 91: 478-485. [DOI:10.2134/agronj1999.00021962009100030020x]
31. Steadman, K. J., A. D. Crawford and R. S. Gallagher. 2003. Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct. Plant Biol. 30:345-352. [DOI:10.1071/FP02175]
32. Turner, N. C., C. J. Thomson and H. M. Rawson. 2001. Effect of temperature on germination and early growth of subterranean clover, capeweed and ryegrass. Grass Forage Sci. 56: 97-104. [DOI:10.1046/j.1365-2494.2001.00253.x]
33. Ungar, 1. A. and P. Binet. 1975. Factors influencing seed dormancy in Spergularia media (L.) C. Presl. Aquat. Bot. 1: 45-55. [DOI:10.1016/0304-3770(75)90006-6]
34. Vila-Aiub, M., P. Neve., K. J. Steadman and S. B. Powles. 2005. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: Dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 42: 288-298. [DOI:10.1111/j.1365-2664.2005.01017.x]
35. Vleeshouwers, L. 1997. Modelling Weed Emergence Patterns. Ph.D. dissertation. Wageningen Agricultural University, Wageningen, The Netherlands.
36. Wagmann, K., N. C. Hautekèete., Y. Piquot and H. Van Dijk. 2010. Potential for evolutionary change in the seasonal timing of germination in sea beet (Beta vulgaris subsp. maritima) mediated by seed dormancy. Genetica 138:763-773. [DOI:10.1007/s10709-010-9457-9]
37. Ying, G. G. and B. Williams. 2000. Dissipation of herbicides in soil and grapes in a south Australian vineyard. Agric. Ecosyst. Environ. 78:283-289. [DOI:10.1016/S0167-8809(99)00127-9]
38. Yusefi, A., M. Rastgoo., M. Ghanbari Motlagh and M. Ebrahimi, 2013. Predicting seedling emergence of flixweed (Descurainia sophia (L.) Webb.) and hoary cress (Cardaria draba (L.) Desv.) in rapeseed (Brassica napus) field in Zanjan conditions. J. Plant Protect. 27: 48-54. (In Persian with English abstract)
39. Zare, A., H. Rahimian Mashhadi., M. Oveisi and R. Hamidi. 2014. Evaluation of wild oat seedling emergence after herbicide application in wheat. Iranian Weed Sci. 11: 37-49. (In Persian with English abstract)
40. Ansari, O., J. Gherekhloo, B. Kamkar and F. Ghaderi-Far. 2016. Breaking seed dormancy and determining cardinal temperatures for Malva sylvestris using nonlinear regression. Seed Sci. Technol. 44: 1-14.##Bedos, C, M. F. Rousseau-Djabri, B. Gabrielle., D. Flura, B. Durand, E. Barriuso and P. Cellier .2006. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation. Environ. Pollut. 144: 958-966.##Benech Arnold, R. L., C. M. Ghersa, R. A. Sanchez and P. Insausti. 1990. A mathematical model to predict Sorghum halepense (L.) Pers. Seedling emergence in relation to soil temperature. Weed Res. 30:91-99.##Biancardi, E., L. W. Panella and R. T. Lewellen. 2012. Beta Maritima: The Origin of Beets. New York, NY: Springer.##Cardina, J., C. P. Herms and D. A. Herms. 2011. Phenological indicators for emergence of large and smooth crabgrass (Digitaria sanguinalis and D. ischaemum). Weed Technol. 25: 141-150.##Carter, C. T. and I. A. Ungar. 2004. Relationships between seed germinability of Spergularia marina (Caryophyllaceae) and the formation of zonal communities in an inland salt marsh. Ann. Bot. 93: 119-125.##Corbin, B. R., Jr. M. McClelland., R. E. Frans., R. E. Talbert and D. Horton. 1994. Dissipation of fluometuron and trifluralin residues after long-term use. Weed Sci. 42:438-445.##Dorsainvil, F., C. Durr., E. Justes and A. Carrera. 2005. Characterisation and modelling of white mustard (Sinapis alba L.) emergence under several sowing conditions. Eur. J. Agron. 23:146-158.##Elahifard, E. and S. Kheyr Andish. 2016. Influence of burial depth on seedling emergence of wild mustard (Sinapis arvensis), junglerice (Echinochloa colona) and milk thistle (Silybum marianum). J. App. Res. Plant Ecophysiol. 3: 41-52. (In Persian with English abstract)##Elkarmi A., R. Abueideh and A. Zaiter. 2009. The growth of Chenopodium Murale irrigated with polluted and unpolluted water: a modeling approach. Aust. J. Basic Appl. Sci. 3: 1827-1837.##Forcella, F., R. L. Benech Arnold, R. Sanchez and C. M. Ghersa. 2000. Modeling seedling emergence. Field Crops Res. 67: 123-139.##Franke, A. C., N. S. Singh, A. S. Mcroberts, S. Nehra, R. Godara and J. Marshall 2007. Phalaris minor seed bank studies: longevity, seedling emergence and seed productions affected by tillage regime. Weed Res. 47: 73-83.##Galmés, J., H. Medrano and J. Flexas. 2006. Germination capacity and temperature dependence in Mediterranean species of Balearic Islands. Investigacion Agraria Sistemas Recursos Forestales, 15:88-95.##Ghaderi-far, F., J. Gherekhloo and M. Alimagham, 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha. 28: 463-469.##Goggin, D. E., S. B. Powles and K. J. Steadman. 2012. Understanding Lolium rigidum seeds: The key to managing a problem weed? Agron J. 2: 222-239.##Hartzler, R. G., D. D. Buhler and D. E. Stoltenberg. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578-584.##Hermann, K., J. Meinhard, P. Dobrev, A. Linkies, B. Pesek, B. Hess, I. Machackova, U. Fischer and G. Leubner-Metzger. 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid duringthe germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J. Exp. Bot. 58: 3047-3060.##Jolley, A. V. and P. K. Johnstone. 1994. Degradation of trifluralin in 3 Victorian soils under field and laboratory conditions. Aust. J. Exp. Agric. 34: 57-65.##Jursík, M., J. Soukup, V. Venclová and J. Holec. 2003. Seed dormancy and germination of Shaggy soldier (Galinsoga ciliata Blake.) and Common lambsquarter (Chenopodium album L.) Plant, Soil Environ. 49: 511-518.##Kazerooni Monfared, E., P. Rezvani Moghaddam and M. Nassiri Mahallati. 2012. Modeling the effects of water stress and temperature on germination of Lactuca serriola L. seeds. Intl Res J Appl Basic Sci
41. 3: 1957-65.##Khalaj, H., I. Allahdadi, H. IranNejad., G., A. Akbari., M. MinBashi and M. A. Baghestani. 2012. Using nonlinear regression approach for prediction of cardinal temperature of canola and four common weeds. J. Agro Ecol. 1:21-33.##Letschert, J. P. W. 1993. Beta section Beta: bio geographical patterns of variation, and taxonomy. PhD Thesis, Wageningen Agricultural University, Netherland.##Morris, P. C., D. Grierson and W. J. Whttington. 1984. Endogenous inhibitors and germination of Beta vulgaris. J. Exp. Bot. 35:994-1002.##Myers, M. W., W. S. Curran, M. J. VanGessel, D. D. Calvin, D. A. Mortensen, B. A. Majek, H. D. Karsten and G. W. Roth. 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Sci. 52: 913-919.##Okusanya, O. T. and I. A. Ungar. 1983. The effects of time of seed production on the germination response of Spergularia marina. Physiol. Plant. 59: 335-342. ##Owen, M. J., P. J. Michael., M. Renton., K. J Steadman and S. B. Powles. 2011. Towards large-scale prediction of Lolium rigidum emergence. I. Can climate be used to predict dormancy parameters? Weed Res. 51:123-132.##Pourreza, J. and A. Bahrani. 2012. Estimating cardinal temperatures of milk thistle (Silybum marianum) seed germination. American-Eurasian J. Agric. and Environ. Sci. 12: 1030-1034.##Scursoni, J. A., R. Benech-Arnold and H. Hirchoren 1999. Demography of wild oat in barley crops: effect of crop, sowing rate and herbicide treatment. Agron J. 91: 478-485.##Steadman, K. J., A. D. Crawford and R. S. Gallagher. 2003. Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct. Plant Biol. 30:345-352.##Ungar, 1. A. and P. Binet. 1975. Factors influencing seed dormancy in Spergularia media (L.) C. Presl. Aquat. Bot. 1: 45-55.##Vila-Aiub, M., P. Neve., K. J. Steadman and S. B. Powles. 2005. Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: Dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 42: 288-298.##Wagmann, K., N. C. Hautekèete., Y. Piquot and H. Van Dijk. 2010. Potential for evolutionary change in the seasonal timing of germination in sea beet (Beta vulgaris subsp. maritima) mediated by seed dormancy. Genetica 138:763-773.##Ying, G. G. and B. Williams. 2000. Dissipation of herbicides in soil and grapes in a south Australian vineyard. Agric. Ecosyst. Environ. 78:283-289.##Yusefi, A., M. Rastgoo., M. Ghanbari Motlagh and M. Ebrahimi, 2013. Predicting seedling emergence of flixweed (Descurainia sophia (L.) Webb.) and hoary cress (Cardaria draba (L.) Desv.) in rapeseed (Brassica napus) field in Zanjan conditions. J. Plant Protect. 27: 48-54. (In Persian with English abstract)##Zare, A., H. Rahimian Mashhadi., M. Oveisi and R. Hamidi. 2014. Evaluation of wild oat seedling emergence after herbicide application in wheat. Iranian Weed Sci. 11: 37-49. (In Persian with English abstract)##



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 22، شماره 2 - ( تابستان 1399 ) برگشت به فهرست نسخه ها