[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 22, Issue 1 (Spring 2020 2020) ::
علوم زراعی 2020, 22(1): 32-49 Back to browse issues page
Effect of salinity stress on physiological characteristics and protein profile of tolerant and sensitive barley (Hordeum vulgare L.) cultivars at vegetative growth stage
Marof Khalily , Mohammad Reza Naghavi
Agricultural Department, Payam Nour University, Iran
Abstract:   (2525 Views)
To study the variation of plant traits related to stress tolerance in tolerant and sensitive barley cultivars under salt stress conditions, an experiment was carried out as factorial arrangements in completely randomized design in Payame Noor University of Mahabad, Iran in 2018. Application of salinity stress of 250 mM of sodium chloride started from tillering stage, and leaf samples were taken at 0, 3, 6 and 9 days following application of salinity treatment.The results showed that salinity stress had adverse effect on morphological and physiological traits such as those traits involved in cell-water relation and photosynthetic traits of the plant. Salinity stress increased sodium ion concentration, but decreased potassium ion concentration, imbalanceed ionic concentrations and decreased K+:Na+ ratio in the cell. In addition, under salinity stress, electrolyte leakage, proline and glycine betaine concentrations were higher than non-stressed conditions. The results also showed that the highest significant decrease in traits was observed in the 9 days samples after the beginning of salinity stress. Overall, Afzal cultivar had better response to salinity stress. Analysis of proteome showed that seven protein spots were in common between the two barley cultivars. Mass spectrometry showed that most of the identified proteins were involved in antioxidant defense, and therefore, the most important common proteins in the two cultivars were involved in cellular homeostasis. In general, the lower expression of these common proteins in cv. Makouei (sensitive) compared to cv. Afzal (tolerant) resulted its lower performance under salinity stress.
Keywords: Barley, Electrolyte leakage, Organic solutions accumulation, Salinity stress and Water relations
Full-Text [PDF 1087 kb]   (986 Downloads)    
Type of Study: Scientific & Research | Subject: Special
Received: 2019/04/11 | Accepted: 2020/05/19 | Published: 2020/05/19
References
1. Arias, D. 2007. Calibration of LAI-2000 to estimate leaf area index and assessment of its relationship with stand productivity in six native and introduced tree species in Costarica. Forest Ecol. Manag. 247: 185-193. [DOI:10.1016/j.foreco.2007.04.039]
2. Baker, N. R. and E. Rosenquist. 2004. Application of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 55: 1607-1627. [DOI:10.1093/jxb/erh196]
3. Bates, L. S., R. D. Walderen and L. D. Taere. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207. [DOI:10.1007/BF00018060]
4. Bhardway, R. and G. Singhal. 1981. Effect of water stress on photochemical activity of chloroplasts during greening etiolated barley seedlings. Plant Cell Physiol. 22 (2): 155-162.
5. Damerval, C., D. De Vienne, M. Zivy and H. Thiellement. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling roteins. Electrophoresis. 7: 52-54. [DOI:10.1002/elps.1150070108]
6. Emami, Y., E. Hosseini, N. Rafiei and H. Pirasteh anousheh. 2013. Reaction of the initial growth and concentrations of sodium and potassium ions in ten cultivars (Hordeum vulgare L.) under salinity stress conditions. J. Crop Physiol. 5 (19): 5-15 (in Persian with English abstract).
7. FAO. 2017. http://faostat3.fao.org/download/Q/QC/E.
8. Grieve, C. M. and S. R. Grattan. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 70: 303-307. [DOI:10.1007/BF02374789]
9. Guo, G., P. Ge, C. Ma, X. Li, D. Lv, S. Wang, W. Ma and Y. Yan. 2012. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J. Proteomics. 75: 1867-1885. [DOI:10.1016/j.jprot.2011.12.032]
10. Herbert, B. 1999. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis. 20 (4-5): 660-663. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<660::AID-ELPS660>3.0.CO;2-Q [DOI:10.1002/(SICI)1522-2683(19990101)20:4/53.0.CO;2-Q]
11. Hortensteiner, S. and B. Krautler. 2011. Chlorophyll breakdown in higher plants. Biochimica et Biophy. Acta. 1807: 977-988. [DOI:10.1016/j.bbabio.2010.12.007]
12. Hussain Wani, S., N. Brajendra Singh, A. Haribhushan and J. Iqbal Mir. 2013. Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Cur. Genomics. 14: 157-165. [DOI:10.2174/1389202911314030001]
13. Jafarinia, M. and M. Shariati. 2012. Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iran. J. Sci. Tech. A1: 71-76.
14. Joseph, B. and D. Jini. 2010. Proteomic analysis of salinity stress-responsive proteins in plants. Asian J. Plant Sci. 9: 307-313. [DOI:10.3923/ajps.2010.307.313]
15. Kausar, R., M. Arshad, A. Shahzad and S. Komatsu. 2013. Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids. 44: 345-359. [DOI:10.1007/s00726-012-1338-3]
16. Khan, M. A., M. U. Shirazi, M. A. Khan, S. M. Mujtaba, E. Islam, S. Mumtaz, A. Shereen, R. U. Ansari and M. U. Ashraf. 2009. Role of proline, K+/Na+ ratio and chlorophyll content in salt tolerance of wheat. Pak. J. Bot. 41 (2): 633-638.
17. Komatsu, S. and N. Tanaka. 2004. Rice proteome analysis: A step toward functional analysis of the rice genome. Proteomics. 4: 938-949. [DOI:10.1002/pmic.200401040]
18. Koocheki, A. 1994. Crop Production in Dry Region: Cereals, Legumes, Industrial and Forage Crops. Jihad Daneshghahi Mashhad Press. (In Persian).
19. Lu, Z. and P. M. Neumann. 1999. Low cell-wall extensibility can limit maximum leaf growth rates in rice. Crop Sci. 39: 126-130. [DOI:10.2135/cropsci1999.0011183X003900010020x]
20. Ma, B. L., M. J. Morison and H. D. Videng. 1995. Leaf greenness and photosynthetic rates in soybean. Crop Sci. 35: 1411-1414. [DOI:10.2135/cropsci1995.0011183X003500050025x]
21. Michaletti, A., M. R. Naghavi, M. Toorchi, L. Zolla and S. Rinalducci. 2018. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep. 8: 1-18. [DOI:10.1038/s41598-018-24012-y]
22. Momeni, N., M. Arvin, Gh. Khajoei nejad, B. Keramat and F. Daneshmand. 2013. Effects of sodium chloride and salicylic acid on some photosynthetic parameters and mineral nutrition in maize (Zea mays L.) plants. Plant Biol. 5 (15): 15-30 (in Persian with English abstract).
23. Nayyar, H. 2003. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ. Exp. Bot. 50: 253-264. [DOI:10.1016/S0098-8472(03)00038-8]
24. Pandey, M. and S. Penna. 2017. Time course of physiological, biochemical and gene expression changes under short-term salt stress in Brassica juncea L. Crop J. 5 (3): 219-230. [DOI:10.1016/j.cj.2016.08.002]
25. Perkins, D. N., D. J. C. Pappin, D. M. Creasy and J. S. Cottrel. 1999. Probability based protein identification by searching sequences databases using mass spectrometry data. Electrophoresis. 20: 3551-3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 [DOI:10.1002/(SICI)1522-2683(19991201)20:183.0.CO;2-2]
26. Sairam, R. K., K. V. Rao and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163: 1037-1046. [DOI:10.1016/S0168-9452(02)00278-9]
27. Sharma, R., D. De Vleesschauwer, M. K. Sharma and P. C. Ronald. 2013. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol. Plant. 6: 250-260. [DOI:10.1093/mp/sss147]
28. Tian, F., J. Gong, J. Zhang, M. Zhang, G. Wang, A. Li and W. Wang. 2013. Enhanced stability of thylakoid membrane proteins and ntioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J. Exp. Bot. 64(6): 1509-1520. [DOI:10.1093/jxb/ert004]
29. von Ballmoos, C. and P. Dimroth. 2007. Two distinct proton binding sites in the ATP synthase family. Biochem. 46: 11800-11809. [DOI:10.1021/bi701083v]
30. Wagner, G. J. 1979. Content and vacuole/ extravacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiol. 64: 88-93. [DOI:10.1104/pp.64.1.88]
31. Wehner, G. G., C. C. Balko, M. M. Enders, K. K. Humbeck and F. F. Ordon. 2015. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol. 15 (1): 125. [DOI:10.1186/s12870-015-0524-3]
32. Zhang, L., S. Xiao, W. Li, W. Feng, J. Li, Z. Wu, X. Gao, F. Liu and M. Shao. 2011. Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J. Exp. Bot. 62 (12): 4229-4238. [DOI:10.1093/jxb/err131]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalily M, Naghavi M R. Effect of salinity stress on physiological characteristics and protein profile of tolerant and sensitive barley (Hordeum vulgare L.) cultivars at vegetative growth stage. علوم زراعی 2020; 22 (1) :32-49
URL: http://agrobreedjournal.ir/article-1-983-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (Spring 2020 2020) Back to browse issues page
نشریه علوم زراعی ایران Iranian Journal of Crop Sciences
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4645