Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

Hadi Mohammadpour, Mohammadreza Ahmadi, Seyedali Yaghmaei, and Mohammadreza Noori

Abstract

The effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes was studied in a field experiment at Ferdowsi University of Mashhad, Iran, during the years 2011-2012. The experiment was conducted under four levels of terminal drought stress, which were: no stress, mild stress, moderate stress, and severe stress. The results showed that terminal drought stress had a negative effect on grain yield and yield components of Kabuli chickpea genotypes. The yield and yield components of the genotypes were reduced by the increase in stress levels.

Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

Hadi Mohammadpour, Mohammadreza Ahmadi, Seyedali Yaghmaei, and Mohammadreza Noori

Abstract

The effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes was studied in a field experiment at Ferdowsi University of Mashhad, Iran, during the years 2011-2012. The experiment was conducted under four levels of terminal drought stress, which were: no stress, mild stress, moderate stress, and severe stress. The results showed that terminal drought stress had a negative effect on grain yield and yield components of Kabuli chickpea genotypes. The yield and yield components of the genotypes were reduced by the increase in stress levels.

Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

Hadi Mohammadpour, Mohammadreza Ahmadi, Seyedali Yaghmaei, and Mohammadreza Noori

Abstract

The effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes was studied in a field experiment at Ferdowsi University of Mashhad, Iran, during the years 2011-2012. The experiment was conducted under four levels of terminal drought stress, which were: no stress, mild stress, moderate stress, and severe stress. The results showed that terminal drought stress had a negative effect on grain yield and yield components of Kabuli chickpea genotypes. The yield and yield components of the genotypes were reduced by the increase in stress levels.

Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

Hadi Mohammadpour, Mohammadreza Ahmadi, Seyedali Yaghmaei, and Mohammadreza Noori

Abstract

The effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes was studied in a field experiment at Ferdowsi University of Mashhad, Iran, during the years 2011-2012. The experiment was conducted under four levels of terminal drought stress, which were: no stress, mild stress, moderate stress, and severe stress. The results showed that terminal drought stress had a negative effect on grain yield and yield components of Kabuli chickpea genotypes. The yield and yield components of the genotypes were reduced by the increase in stress levels.

Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

Hadi Mohammadpour, Mohammadreza Ahmadi, Seyedali Yaghmaei, and Mohammadreza Noori

Abstract

The effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes was studied in a field experiment at Ferdowsi University of Mashhad, Iran, during the years 2011-2012. The experiment was conducted under four levels of terminal drought stress, which were: no stress, mild stress, moderate stress, and severe stress. The results showed that terminal drought stress had a negative effect on grain yield and yield components of Kabuli chickpea genotypes. The yield and yield components of the genotypes were reduced by the increase in stress levels.
خشکی یکی از مهم‌ترین عوامل محدود‌کننده رشد گیاهان در سرتاسر جهان و شاخصی تنش محیطی است. ایران با متوسط بارندگی حدود ۲۵۰ میلی‌متر، یک سوم متوسط بارندگی جهان را دارد. بر اساس گزارش قانونی حدود ۹۰ درصد از کشور ایران در نوایی خشکی و نیمه‌خشکی قرار دارد (FAO, ۲۰۱۰).

در بین گیاهان زراعی، خانواده جویبان در جمله

نحوشنش مهم‌تر در تأمین نیازهای غذایی جویبان

بشیری، به ویژه در کشورهای در حال توسعه آسیایی، آفریقا و آمریکای لاتین دارد. اگرچه تعدادی از این گیاهان خوبی به ضریب دیمی سازگاری پیدا کرده‌اند، ولی ظرفیت تولید آن‌ها اغلب بایست. به طوری که در ایران، به وجود این که ۹۸ درصد مطلع زیر کشت و ۹۳ درصد تولید نخود به صورت دیم است، متوسط عملکرد آن ۳۵۰ کیلوگرم در هکتار می‌باشد، در صورتی که عملکرد آن در اراضی آبی ۱۱۱۱

کیلوگرم در هکتار گزارش شده است (Singh and Saxena, ۱۹۹۰).

افزایش اندازه دانه، عملکرد دانه، عملکرد بیولیزیک و

شاخص برداشت نخود را به اجرای آبی‌زاری (نسبت به

شراکت تنش خشکی) گزارش کرده‌اند. نتایج مطالعات

نشان داده‌اند که در هر‌پیامین نخود باری تحمل به

خشکی تنش زنیتیکی وجوه دارد (Baker, ۱۹۹۴) و

و این تنوع احتمالاً به دنی

اترهای ترکیبی صفات و اثراتقابل آنها می‌باشد (Johansen et al., ۱۹۹۴)

که می‌توان از تنش موجود در

جهت انتخاب برای اصلاح مقاوم به نشانهای

محیطی، به خصوص نشانه‌گزار سود جست و به ارقام

متاسبی به شراکت محیطی منطقه دیگر می‌کنی

پایه توجه داشت که عملکرد دانه صفتی است

که ممکن است به سایر صفات همبستگی نشان دهد،

ولی جن در ضایع همبستگی بین صفات صرف‌اً همبستگی

۲۰۳
اثز تٌؼ خؾکی اًتْای فقل تز عولکازد

202
همچنین روایت علم و معلولی صفات از طریق تجزیه علمی و تعیین عوامل پنهان مؤثر بر عملکرد با استفاده از روش تجزیه به عامل ها انجام گرفت.

مواد و روش‌ها
در این تحقیق 62 زنوتیب نخود کابلی به همراه دو شاهد محیطی (کورسوس و چم) از کلکسیون جنوبی رپیدس کشاورزی و متابع طبیعی دانشگاه تهران انتخاب (جدول 1) و در قالب دو طرح لاچساده 88 (ساده) به صورت جدایانه در شرایط آبی و تنش خشکی انتخاب فصل از مزرعه تحقیقاتی پرپدی کشاورزی و متابع طبیعی دانشگاه تهران واقع در دوست آباد کرج به عرض جغرافیایی 35 درجه و 56 دقیقه شمالی و طول جغرافیایی 50 درجه و 58 دقیقه شرقی با ارتفاع 1112/5 از سطح دریا در سال زراعی 1389 کشت شدند.

براساس داده‌های سالانه، میانگین بارندگی سالانه محل اجرای آزمایش 273 میلی‌متر و میزان کلی بارندگی در طول فصل رشد (فروپرده‌های تابستانی) 10/7 میلی‌متر بود. در جدول 2 تعدادی از متغیرهای هواشناسی استفاده مکرود در طول سال 1389 نشان داده شده است. عملیات تهیه زمین با عمق شخم 25 سانتی‌متر در پاییز 1388 آغاز و قبل از کشت آماده سازی زمین با اجرای یک شخم بهره‌بره، دیگه انجام شد. کاشت بذر به صورت دستی انجام گرفت و هر کرت آزمایشی شالی دو خط به طول 2 متر و با فاصله خطوط 30 سانتی‌متر و فاصله بند 3 بر روی خطوط 10 سانتی‌متر و فاصله بند 5 سانتی‌متر در نظر گرفته شد. در مراحل داشت، برای مبارزه با علف‌های هرز و چین دستی صورت گرفت. زمان که حدود 99 درصد برندهای کرت هر راس هبودن، برداشت انجام شد.

صفات مورد بررسی شامل تعداد روز تا گل‌دهی، تعداد روز تا غلبه‌دهی، تعداد شاخه‌های اصلی، قطر شاخه اصلی در گره اول، تعداد گره، ارتفاع بوته، طول...
جدول 1- اسم‌آوری و منشأ 64 ژنوتیپ نهبو ت کبابی مورد ارزیابی

<table>
<thead>
<tr>
<th>ژنوتیپ کد</th>
<th>نام ژنوتیپ</th>
<th>منشأ</th>
<th>ژنوتیپ کد</th>
<th>نام ژنوتیپ</th>
<th>منشأ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12-071-01834</td>
<td>Karaj</td>
<td>318</td>
<td>12-071-03846</td>
<td>Jiroft</td>
</tr>
<tr>
<td>12</td>
<td>12-071-01952</td>
<td>Karaj</td>
<td>323</td>
<td>12-071-03852</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>16</td>
<td>12-071-01972</td>
<td>Karaj</td>
<td>325</td>
<td>12-071-03854</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>22</td>
<td>12-071-02090</td>
<td>Karaj</td>
<td>328</td>
<td>12-071-03859</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>23</td>
<td>12-071-01837</td>
<td>Ghazvin</td>
<td>335</td>
<td>12-071-03871</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>29</td>
<td>12-071-02270</td>
<td>Esfahan</td>
<td>345</td>
<td>12-071-03884</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>36</td>
<td>12-071-02316</td>
<td>Esfahan</td>
<td>356</td>
<td>12-071-03899</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>38</td>
<td>12-071-02351</td>
<td>Guchan</td>
<td>357</td>
<td>12-071-03900</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>56</td>
<td>12-071-02740</td>
<td>Shiraz</td>
<td>369</td>
<td>12-071-03915</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>59</td>
<td>12-071-02940</td>
<td>Ardabil</td>
<td>370</td>
<td>12-071-03916</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>109</td>
<td>12-071-06678</td>
<td>Mammehan</td>
<td>375</td>
<td>12-071-03922</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>120</td>
<td>12-071-03585</td>
<td>Karaj</td>
<td>394</td>
<td>12-071-03946</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>128</td>
<td>12-071-03718</td>
<td>Urmia</td>
<td>403</td>
<td>12-071-03753</td>
<td>Torbat Jam</td>
</tr>
<tr>
<td>129</td>
<td>12-071-03746</td>
<td>Urmia</td>
<td>466</td>
<td>12-071-04043</td>
<td>Esfahan</td>
</tr>
<tr>
<td>139</td>
<td>12-071-03885</td>
<td>Torbat Jam</td>
<td>473</td>
<td>12-071-04052</td>
<td>Dare Gaz</td>
</tr>
<tr>
<td>154</td>
<td>12-071-03641</td>
<td>Karaj</td>
<td>474</td>
<td>12-071-04053</td>
<td>Dare Gaz</td>
</tr>
<tr>
<td>187</td>
<td>12-071-03686</td>
<td>Urmia</td>
<td>478</td>
<td>12-071-04063</td>
<td>Esfahan</td>
</tr>
<tr>
<td>198</td>
<td>12-071-03703</td>
<td>Urmia</td>
<td>490</td>
<td>12-071-04084</td>
<td>Ardabil</td>
</tr>
<tr>
<td>216</td>
<td>12-071-03725</td>
<td>Urmia</td>
<td>492</td>
<td>12-071-04091</td>
<td>FAO</td>
</tr>
<tr>
<td>233</td>
<td>12-071-03746</td>
<td>Urmia</td>
<td>508</td>
<td>12-071-06885</td>
<td>Urmia</td>
</tr>
<tr>
<td>235</td>
<td>12-071-03749</td>
<td>Urmia</td>
<td>511</td>
<td>12-071-06888</td>
<td>Urmia</td>
</tr>
<tr>
<td>236</td>
<td>12-071-03750</td>
<td>Urmia</td>
<td>512</td>
<td>12-071-06889</td>
<td>Urmia</td>
</tr>
<tr>
<td>239</td>
<td>12-071-03753</td>
<td>Urmia</td>
<td>525</td>
<td>12-071-06903</td>
<td>Urmia</td>
</tr>
<tr>
<td>245</td>
<td>12-071-03760</td>
<td>Jiroft</td>
<td>534</td>
<td>12-071-06912</td>
<td>Ardabil</td>
</tr>
<tr>
<td>259</td>
<td>12-071-03776</td>
<td>Jiroft</td>
<td>552</td>
<td>12-071-06931</td>
<td>Miyaneh</td>
</tr>
<tr>
<td>269</td>
<td>12-071-03788</td>
<td>Jiroft</td>
<td>555</td>
<td>12-071-06934</td>
<td>Urmia</td>
</tr>
<tr>
<td>284</td>
<td>12-071-03805</td>
<td>Jiroft</td>
<td>563</td>
<td>12-071-06942</td>
<td>Khoi</td>
</tr>
<tr>
<td>289</td>
<td>12-071-03811</td>
<td>Jiroft</td>
<td>606</td>
<td>12-071-06985</td>
<td>Mahan</td>
</tr>
<tr>
<td>306</td>
<td>12-071-03831</td>
<td>Jiroft</td>
<td>629</td>
<td>12-071-07007</td>
<td>Esfahan</td>
</tr>
<tr>
<td>307</td>
<td>12-071-03832</td>
<td>Jiroft</td>
<td>642</td>
<td>12-071-07021</td>
<td>Bam</td>
</tr>
<tr>
<td>308</td>
<td>12-071-03833</td>
<td>Jiroft</td>
<td>998</td>
<td>Control</td>
<td>Jam</td>
</tr>
<tr>
<td>317</td>
<td>12-071-03845</td>
<td>Jiroft</td>
<td>999</td>
<td>Control</td>
<td>Korosh</td>
</tr>
</tbody>
</table>

*: Genotype number in the gene bank of Agricultural and Natural Resources Campus, University of Tehran

جدول 2- خصوصیات اقلیمی محل اجرای آزمایش (1389)

میانگین یک‌ماهانه درجه حرارت	میانگین سالانه بارندگی	میانگین سالانه آب‌های صافین در	میانگین رطوبت	میانگین رطوبت در نسبت	میانگین حداقل حاکم	میانگین حداقل حاکم	میانگین حداقل حاکم	میانگین حداقل حاکم				
ماه	میانگین درجه حرارت (°C)	میانگین بارندگی (mm)	میانگین نسبت	میانگین رطوبت در نسبت	میانگین حداقل حاکم درجه حرارت (°C)	میانگین حداقل حاکم بارندگی (mm)	میانگین حداقل حاکم نسبت	میانگین حداقل حاکم رطوبت در نسبت	میانگین حداقل حاکم درجه حرارت (°C)	میانگین حداقل حاکم بارندگی (mm)	میانگین حداقل حاکم نسبت	میانگین حداقل حاکم رطوبت در نسبت
Mar- Apr.	12.6	54.0	5.1	57	7.52	3.56	8.21	14.04	17.69	17.42	13.94	
Apr- May	17.6	47.3	6.5	54	7.6	8.21	14.04	17.69	17.42	13.94		
May- Jun.	25.7	0.4	11.68	31	11.13	14.04	17.69	17.42	13.94			
Jun- Jul.	29.1	0.0	12.87	33	11.7	17.69	17.42	13.94				
Jul- Aug.	27.3	0.0	11.78	35	11.24	17.42	13.94					
Aug- Sep.	24.3	0.0	9.21	39.8	10.48	13.94	17.42	13.94				
تهریه‌های بر محصول و متضمن به تهریه شکل‌های شناسایی شده، بر اساس میانگین تهریه‌های ضریب همیستگی ساده بین صفات مورد بررسی در شرایط بدون تنش و تنش شکل‌های محسوب شده، نتایج حاصل از تحلیل همیستگی بین صفات در شرایط تنش و بدون تنش نشان داد که عملکرد دانه تک بونه به ترتیب با صفات وزن غلاف‌های بر، عملکرد بولوزیک، تعداد غلاف‌های پر، وزن صد دانه، عرض دانه، قطر شاخه اصلی همیستگی مثبت و معنی‌داری داشت. مروی و همکاران (Mardi et al., 2009) میزان وزن دانه و صفات داتر دانه بین تهریه‌های با تنش شکل‌های محاسبه شده.

جدول 3- میانگین عملکرد دانه تک بونه و درصد کاهش آن در تنش شکل‌های محاسبه شده، با تنش بدون تنش و تنش شکل‌های

Table 3. Yield and yield reduction rate in Kabuli chickpea genotypes under normal and drought stress conditions

<table>
<thead>
<tr>
<th>شماره تنش</th>
<th>Yp</th>
<th>Ys</th>
<th>Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24.37</td>
<td>21.74</td>
<td>8.73</td>
</tr>
<tr>
<td>12</td>
<td>15.30</td>
<td>14.53</td>
<td>5.02</td>
</tr>
<tr>
<td>16</td>
<td>17.18</td>
<td>11.85</td>
<td>31.02</td>
</tr>
<tr>
<td>22</td>
<td>22.34</td>
<td>21.31</td>
<td>6.40</td>
</tr>
<tr>
<td>23</td>
<td>16.98</td>
<td>16.65</td>
<td>5.45</td>
</tr>
<tr>
<td>29</td>
<td>25.29</td>
<td>14.07</td>
<td>44.37</td>
</tr>
<tr>
<td>36</td>
<td>23.33</td>
<td>22.12</td>
<td>17.54</td>
</tr>
<tr>
<td>38</td>
<td>19.73</td>
<td>18.58</td>
<td>5.84</td>
</tr>
<tr>
<td>56</td>
<td>16.06</td>
<td>15.25</td>
<td>5.09</td>
</tr>
<tr>
<td>59</td>
<td>17.84</td>
<td>12.90</td>
<td>27.67</td>
</tr>
<tr>
<td>109</td>
<td>19.58</td>
<td>19.07</td>
<td>2.59</td>
</tr>
<tr>
<td>120</td>
<td>31.24</td>
<td>27.55</td>
<td>34.76</td>
</tr>
<tr>
<td>129</td>
<td>26.18</td>
<td>14.18</td>
<td>45.84</td>
</tr>
<tr>
<td>129</td>
<td>19.86</td>
<td>17.38</td>
<td>14.03</td>
</tr>
<tr>
<td>139</td>
<td>25.00</td>
<td>19.01</td>
<td>23.96</td>
</tr>
<tr>
<td>154</td>
<td>17.13</td>
<td>14.24</td>
<td>16.87</td>
</tr>
<tr>
<td>187</td>
<td>16.99</td>
<td>16.34</td>
<td>3.79</td>
</tr>
<tr>
<td>198</td>
<td>21.48</td>
<td>10.11</td>
<td>52.94</td>
</tr>
<tr>
<td>216</td>
<td>17.31</td>
<td>16.31</td>
<td>5.77</td>
</tr>
<tr>
<td>233</td>
<td>17.85</td>
<td>13.14</td>
<td>26.37</td>
</tr>
<tr>
<td>235</td>
<td>15.05</td>
<td>13.49</td>
<td>10.40</td>
</tr>
<tr>
<td>236</td>
<td>10.10</td>
<td>9.77</td>
<td>3.30</td>
</tr>
<tr>
<td>239</td>
<td>22.39</td>
<td>17.05</td>
<td>23.84</td>
</tr>
<tr>
<td>245</td>
<td>19.45</td>
<td>13.56</td>
<td>30.27</td>
</tr>
<tr>
<td>259</td>
<td>19.31</td>
<td>12.85</td>
<td>33.46</td>
</tr>
<tr>
<td>269</td>
<td>14.90</td>
<td>12.07</td>
<td>19.02</td>
</tr>
<tr>
<td>284</td>
<td>18.81</td>
<td>18.06</td>
<td>3.97</td>
</tr>
<tr>
<td>289</td>
<td>19.56</td>
<td>16.44</td>
<td>15.93</td>
</tr>
<tr>
<td>306</td>
<td>12.38</td>
<td>11.18</td>
<td>9.71</td>
</tr>
<tr>
<td>307</td>
<td>15.14</td>
<td>14.14</td>
<td>16.69</td>
</tr>
<tr>
<td>308</td>
<td>21.56</td>
<td>15.12</td>
<td>29.87</td>
</tr>
<tr>
<td>317</td>
<td>13.72</td>
<td>8.20</td>
<td>40.24</td>
</tr>
</tbody>
</table>

\[\text{Yp}= \text{Potential yield}; \text{Ys}= \text{Stress yield}; \text{Yr}= \text{Yield reduction rate (\%)} \]
گول و همکاران (2001) نیز با ارزیابی روایت بین عملکرد احاطه عملکرد ۵ ردم نخود، همبستگی به‌این عملکرد دانه تک بتوه و تعداد غلاف در بوته (۸۵/۰) و عملکرد پولیوژیک (۸۰/۰) گزارش کردند.

به منظور تعیین اهمیت این صفات در تغییرات مربوط به عملکرد، تجزیه‌گرگرسیون گام به گام انجام شد. با توجه به اینکه صفات خشکی برداشت و عملکرد پولیوژیک در برگیرندگی عملکرد دانه می‌باشد، به منظور شناسایی سایر صفات مؤثر بر عملکرد دانه، تجزیه‌گرگرسیون گام به گام بعد از حذف این صفات انجام شد. نتایج تجزیه‌گرگرسیون گام به گام برای شرایط بدون تنض (جدول ۴) نشان داد که از میان صفات مورد بررسی، وزن خلال‌های پر اولین صفتی بود که وارد مدل شده با توجه به ۹۶/۸ درصد از تغییرات عملکرد دانه تک بتوه را توجه کرده.

کردن، ولی با توجه به اینکه وزن خلال‌های پر درصد بالایی از تغییرات مربوط به عملکرد را توجه می‌کرد، برای شناسایی سایر صفات مؤثر در تجزیه‌گرگرسیون گام به گام پس از حذف وزن خلال‌های پر دوباره انجام نش (جدول ۵). در این حال تعداد غلاف‌های پر اولین صفتی بود که وارد مدل شده به تهیه‌ای ۷۹/۶ درصد تغییرات عملکرد را توجه کرده و پس از آن به ترتیب وزن ۱۰۰ حالت دانه در غلاف وارد مدل شدند که در کل ۷۹/۳ درصد تغییرات مربوط به عملکرد را توجه کرده.

در شرایط خشکی نیز تجزیه‌گرگرسیون گام به گام (جدول ۶) نشان داد که وزن خلال‌های پر اولین صفتی بود که وارد مدل شده در بر تهیه‌ای ۷۹/۶ درصد از تغییرات عملکرد را توجه
آزمون کرویت بارتلست استفاده شد. برای تعیین اعتبار داده‌ها در ورشی برای کننده‌ها و نش خشکی داده‌ها به دو قسمت تصادفی ترتیب شدند و سپس تجربه به عامل‌های برای هر قسمت به طور جداگانه انجام شد.

با توجه به اینکه تاثیر این جریان در شرایط بدون نش تشن خشکی پیکر، بنابراین تغییر افراد روی نتایج اقدامات تجربی به عامل‌ها در شرایط بدون تشن با استفاده از صفات مورد بررسی تمام شد و چهار عامل براساس مقدار و بازخورده بذر گزین از این انتخاب شدند که جمعاً 79 درصد از صفات کل داده‌ها را توجه کردن (جدول 9). عامل اول حذف

درصد از تغییرات را توجه کرد که شامل صفات وزن صد داده، ارتفاع بونه، طول و عرض غلاف و طول و عرض داون پاش و عامل دوم که حذف 20 درصد از تغییرات را توجه کرده و شامل صفات عقلی و طول و عرض داون پاش عامل سوم 10 درصد از تغییرات را توجه کرد و شامل صفات طول و عرض داون پاش عامل 5 درصد از تغییرات را توجه کرده و شامل صفات عقلی و طول و عرض داون پاش عمکرد دانه تک بونه، ارتفاع بونه، تعادل خانه‌ها و اصولی، قطر خنثی اصلی می‌باشد و عامل دوم دوم بیش از 33 درصد از تغییرات را توجه کرده و شامل صفات وزن با بار میت و شاخص برداشت با بار منفی، عامل چهارم که برای 7 درصد از تغییرات را توجه کرده، شامل صفات تعادل دانه در عقلی با بار منفی و طول دانه با بار مثبت بود. در شرایط تشن خشکی نیز میزان اشکار برای صفات مورد بررسی بود و تعادل دانه در دو بونه (958/100) به همراه عمکرد پیوژیک (1959/100) برآورد شد.

بنابراین به نظر می‌رسد که انتخاب براساس این دو عامل بیش‌تر تاثیر را در عمکرد دانه تک بونه خواهد داشت و زوکتیب های پیوژیک شده نیز میزان عمکرد دانه تک بونه را خواهد داشت. عامل سوم که حذف 16 درصد تغییرات را توجه کرده شامل صفات پیوژیک تعادل روز تا گلدش به علاف دیه بود. عامل چهارم حذف 9 درصد تغییرات را توجه کرد و شامل صفات برداشت و تعادل دانه در علاف با بار منفی و تعادل شاخص اصلی با بار مثبت بیش‌تر تأثیر را در این صفت داشت.

میزان اشکار نیز بخشی از واریانس یک مکان تغییر است که به عامل‌های مشترک مربوط می‌شود و همچنین میزان آن بین بانش تشن دسته دقت بیشتر در برآورد واریانس مکان مربوط به می‌باشد (Jackson, 1991). در شرایط بدون نش میزان اشکار اکثر صفات بالا بود.
جدول 4- تجزیه و رگرسیون گام به گام بین عملکرد دانه نک بوته و سایر صفات گیاهی در زنویب‌های نخود کابیلی در شرایط بدون تن‌ش

Table 4. Stepwise regression analysis for seed yield and other plant characteristics in Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>مرحله</th>
<th>پیش‌بینی‌گر</th>
<th>صفات گیاهی</th>
<th>a</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>R^2 adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seed and pod weight</td>
<td>وزن گل‌های برو</td>
<td>0.644**</td>
<td>0.740**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.968</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>Main branch diameter</td>
<td>قطر شاخه اصلی</td>
<td>2.688**</td>
<td>0.765**</td>
<td>-0.521*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.970</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Plant height</td>
<td>ارتفاع بوته</td>
<td>0.128**</td>
<td>0.754**</td>
<td>-0.714**</td>
<td>0.090**</td>
<td>-</td>
<td>-</td>
<td>0.973</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>Seed.pod^1</td>
<td>تعادل دانه در غلاف</td>
<td>-2.402**</td>
<td>0.759**</td>
<td>-0.710**</td>
<td>0.111**</td>
<td>1.198*</td>
<td>-</td>
<td>0.975</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>No. of main branch</td>
<td>تعداد شاخه اصلی</td>
<td>-6.296*</td>
<td>0.749**</td>
<td>-0.732**</td>
<td>0.094**</td>
<td>1.585**</td>
<td>1.283**</td>
<td>0.978</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively

جدول 5- تجزیه و رگرسیون گام به گام پس از حذف صفت وزن گل‌های برو در زنویب‌های نخود کابیلی در شرایط بدون یک تن‌ش

Table 5. Stepwise regression analysis after removing seed and pod weight in Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>مرحله</th>
<th>پیش‌بینی‌گر</th>
<th>صفات گیاهی</th>
<th>a</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>R^2 adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pod.plant^1</td>
<td>تعادل غلاف‌های برو</td>
<td>5.476*</td>
<td>0.154**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.396</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>100-seed weight</td>
<td>وزن 100 دانه</td>
<td>-8.944**</td>
<td>0.174**</td>
<td>0.699**</td>
<td>-</td>
<td>-</td>
<td>0.833</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Seed.pod^1</td>
<td>تعادل دانه در غلاف</td>
<td>-30.453**</td>
<td>0.202**</td>
<td>0.994**</td>
<td>11.115**</td>
<td>-</td>
<td>0.973</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively

جدول 6- تجزیه و رگرسیون گام به گام عملکرد دانه نک بوته و سایر صفات گیاهی در زنویب‌های نخود کابیلی در شرایط تحت خشکی

Table 6. Stepwise regression analysis for seed yield and other plant characteristics in Kabuli chickpea genotypes under drought stress condition

<table>
<thead>
<tr>
<th>مرحله</th>
<th>پیش‌بینی‌گر</th>
<th>صفات گیاهی</th>
<th>a</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>R^2 adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filled pods weight</td>
<td>وزن غلاف‌های برو</td>
<td>5.790**</td>
<td>0.505**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.728</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>100-seed weight</td>
<td>وزن 100 دانه</td>
<td>3.339**</td>
<td>0.464**</td>
<td>0.225**</td>
<td>-</td>
<td>-</td>
<td>0.794</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Seed.plant^1</td>
<td>تعادل دانه در بوته</td>
<td>-8.329**</td>
<td>0.091*</td>
<td>0.730**</td>
<td>0.131**</td>
<td>-</td>
<td>0.941</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>Seed.pod^1</td>
<td>تعادل دانه در غلاف</td>
<td>-9.896**</td>
<td>0.145**</td>
<td>0.714**</td>
<td>0.117**</td>
<td>1.646*</td>
<td>-</td>
<td>0.944</td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively
جدول 7- تجزیه علیت فنوتیپی برای عملکرد نوع کوبلی چنگال در شرایط آبیاری بدنون تنش

Table 7. Phenotypic path coefficient analysis for grain yield of Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>ویژگی گیاهی</th>
<th>ضریب همبستگی</th>
<th>ضریب همبستگی اثر مستقیم</th>
<th>ضریب همبستگی اثر غیر مستقیم از طریق</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Filled pods weight</td>
<td>0.984</td>
<td>0.547</td>
<td>-0.021</td>
<td>0.012</td>
<td>-0.063</td>
<td>0.006</td>
<td>0.252</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Main branch diameter</td>
<td>0.453</td>
<td>-0.041</td>
<td>0.278</td>
<td>-</td>
<td>0.014</td>
<td>-0.056</td>
<td>0.004</td>
<td>0.153</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>3. Plant height</td>
<td>0.416</td>
<td>0.031</td>
<td>0.212</td>
<td>-0.019</td>
<td>-</td>
<td>-0.096</td>
<td>0.006</td>
<td>0.048</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>4. Seeds.pod<sup>-1</sup></td>
<td>-0.211</td>
<td>0.253</td>
<td>-0.136</td>
<td>0.008</td>
<td>-0.012</td>
<td>-</td>
<td>-0.007</td>
<td>-0.067</td>
<td>-0.253</td>
<td></td>
</tr>
<tr>
<td>5. No. of main branch</td>
<td>0.419</td>
<td>0.016</td>
<td>0.211</td>
<td>-0.013</td>
<td>0.013</td>
<td>-0.105</td>
<td>-</td>
<td>0.107</td>
<td>0.187</td>
<td></td>
</tr>
<tr>
<td>6. Pod.plant<sup>-1</sup></td>
<td>0.637</td>
<td>0.386</td>
<td>0.357</td>
<td>-0.016</td>
<td>0.003</td>
<td>-0.044</td>
<td>0.004</td>
<td>-</td>
<td>-0.057</td>
<td></td>
</tr>
<tr>
<td>7. 100-seed weight</td>
<td>0.573</td>
<td>0.446</td>
<td>0.304</td>
<td>-0.009</td>
<td>0.016</td>
<td>-0.144</td>
<td>0.006</td>
<td>-0.049</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Residual=0.102

جدول 8- تجزیه ضرایب علیت فنوتیپی برای عملکرد نوع کوبلی چنگال در شرایط آبیاری تحت فشار تنش خشکی

Table 8. Phenotypic path coefficient analysis for grain yield of Kabuli chickpea genotypes under drought stress condition

<table>
<thead>
<tr>
<th>ویژگی گیاهی</th>
<th>ضریب همبستگی</th>
<th>ضریب همبستگی اثر مستقیم</th>
<th>ضریب همبستگی اثر غیر مستقیم از طریق</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Filled seed weight</td>
<td>0.856</td>
<td>0.244</td>
<td>-</td>
<td>0.22</td>
<td>0.427</td>
<td>-0.038</td>
<td></td>
</tr>
<tr>
<td>2. 100-seed weight</td>
<td>0.472</td>
<td>0.858</td>
<td>0.062</td>
<td>-</td>
<td>-0.398</td>
<td>-0.052</td>
<td></td>
</tr>
<tr>
<td>3. Seed.pod<sup>-1</sup></td>
<td>0.472</td>
<td>0.757</td>
<td>0.138</td>
<td>-0.451</td>
<td>-</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>4. Seed.pod<sup>-1</sup></td>
<td>-0.246</td>
<td>0.095</td>
<td>-0.095</td>
<td>-0.46</td>
<td>0.212</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Residual=0.227
جدول 9- تجزیه باعث‌های جرخت و ریماکس برای زنوبی‌های نخود کابلی در شرایط بدون نش

| متغیر‌شناسی نشانه‌گر | عامل اول | عامل دوم | عامل سوم | عامل چهارم | میزان اشتراک | جمع‌آوری گسترده (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ساختار ساق</td>
<td>-0.037</td>
<td>0.092</td>
<td>0.141</td>
<td>0.822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ساق گیاهی</td>
<td>-0.093</td>
<td>0.878</td>
<td>-0.081</td>
<td>0.798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد طاقن در گیاهی</td>
<td>-0.565</td>
<td>0.032</td>
<td>-0.315</td>
<td>0.971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد غلاف وار در گیاهی</td>
<td>-0.297</td>
<td>0.122</td>
<td>0.143</td>
<td>0.905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن 100 دانه</td>
<td>0.882</td>
<td>0.314</td>
<td>0.148</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن غلاف یک دانه</td>
<td>0.408</td>
<td>-0.071</td>
<td>0.596</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>یار افزایشی</td>
<td>0.271</td>
<td>0.291</td>
<td>0.878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهره گیاهی</td>
<td>0.397</td>
<td>-0.112</td>
<td>0.956</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارتفاع گیاهی</td>
<td>0.159</td>
<td>-0.342</td>
<td>-0.797</td>
<td>0.778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد شاخه‌های اصلی</td>
<td>0.524</td>
<td>0.209</td>
<td>0.411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>قطر شاخه‌های اصلی</td>
<td>0.323</td>
<td>0.249</td>
<td>0.592</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد دانه در غلاف</td>
<td>-0.420</td>
<td>0.238</td>
<td>-0.759</td>
<td>0.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول غلاف</td>
<td>0.875</td>
<td>0.063</td>
<td>0.039</td>
<td>0.785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض غلاف</td>
<td>0.923</td>
<td>0.066</td>
<td>0.005</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول دانه</td>
<td>0.563</td>
<td>-0.482</td>
<td>0.402</td>
<td>0.723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض دانه</td>
<td>0.877</td>
<td>-0.157</td>
<td>0.079</td>
<td>0.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار وزنه</td>
<td>6.433</td>
<td>3.396</td>
<td>2.094</td>
<td>1.501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع‌آوری گسترده (%):</td>
<td>37.839</td>
<td>57.818</td>
<td>70.133</td>
<td>81.342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 10- تجزیه باعث‌های جرخت و ریماکس برای زنوبی‌های نخود کابلی در شرایط نش خشک

| متغیر‌شناسی نشانه‌گر | عامل اول | عامل دوم | عامل سوم | عامل چهارم | میزان اشتراک | جمع‌آوری گسترده (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ساختار ساق</td>
<td>0.033</td>
<td>0.877</td>
<td>-0.146</td>
<td>0.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ساق گیاهی</td>
<td>-0.051</td>
<td>0.837</td>
<td>-0.089</td>
<td>0.726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد طاقن در گیاهی</td>
<td>0.851</td>
<td>0.129</td>
<td>-0.367</td>
<td>0.958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد غلاف در گیاهی</td>
<td>0.928</td>
<td>0.128</td>
<td>0.132</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن 100 دانه</td>
<td>-0.123</td>
<td>0.421</td>
<td>0.840</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن غلاف یک دانه</td>
<td>0.881</td>
<td>-0.034</td>
<td>0.186</td>
<td>0.936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>یار افزایشی</td>
<td>0.891</td>
<td>0.163</td>
<td>0.145</td>
<td>0.959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهره گیاهی</td>
<td>0.754</td>
<td>0.040</td>
<td>0.832</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ارتفاع گیاهی</td>
<td>-0.391</td>
<td>-0.655</td>
<td>-0.223</td>
<td>0.634</td>
<td></td>
<td></td>
</tr>
<tr>
<td>قطر شاخه‌های اصلی</td>
<td>0.555</td>
<td>-0.102</td>
<td>0.550</td>
<td>0.727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد شاخه‌های اصلی</td>
<td>0.642</td>
<td>0.101</td>
<td>0.423</td>
<td>0.613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>قطر شاخه‌های اصلی</td>
<td>0.746</td>
<td>0.104</td>
<td>0.199</td>
<td>0.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد غلاف در غلاف</td>
<td>0.928</td>
<td>0.010</td>
<td>0.088</td>
<td>0.893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض غلاف</td>
<td>0.131</td>
<td>-0.084</td>
<td>0.064</td>
<td>0.846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>طول دانه</td>
<td>0.126</td>
<td>0.008</td>
<td>0.361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عرض دانه</td>
<td>0.227</td>
<td>-0.326</td>
<td>0.614</td>
<td>0.765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار وزنه</td>
<td>0.146</td>
<td>-0.112</td>
<td>0.254</td>
<td>0.749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع‌آوری گسترده (%):</td>
<td>6.992</td>
<td>3.958</td>
<td>1.660</td>
<td>1.265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.127</td>
<td>64.142</td>
<td>74.177</td>
<td>81.618</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۱۱- تجزیه خوشه‌ای در زنوتیب‌های نخود کابلی در شرایط بدون تنش

<table>
<thead>
<tr>
<th>شاخص‌‌ها</th>
<th>گروه ۱</th>
<th>گروه ۲</th>
<th>گروه ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد زنوتیب</td>
<td>۲۵</td>
<td>۳۸</td>
<td>۱</td>
</tr>
<tr>
<td>روز تا ۵۰٪ گل‌‌دهی</td>
<td>۹۲.۵۸±۱.۸۳</td>
<td>۹۱.۸۰±۱.۰۶</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>روز تا ۵۰٪ غلبه‌گری</td>
<td>۱۰۰.۰۸±۲.۱۴</td>
<td>۹۹.۹۴±۲.۴۴</td>
<td>۹۹.۱۰±۲.۴۶</td>
</tr>
<tr>
<td>تعداد زنوتیب در هر هکتار</td>
<td>۱۴۱.۶۹±۱۴.۷۴</td>
<td>۹۷.۸۴±۱۴.۷۷</td>
<td>۶۵.۳۵±۲۰.۰۹</td>
</tr>
<tr>
<td>ضریب برداشت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت طول گل‌‌دهی</td>
<td>۲۸.۹۲±۴.۷۴</td>
<td>۱۹.۷۱±۵.۸۳</td>
<td>۱۴.۲۶±۷.۲۸</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۱۳.۲۹±۵.۱۲</td>
<td>۱۶.۲۱±۶.۰۴</td>
<td>۱۴.۰۴±۵.۳۶</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
<tr>
<td>ضریب برداشت صورت گل‌‌دهی</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
<td>۹۰.۲۱±۲.۰۷</td>
</tr>
<tr>
<td>ضریب برداشت طول بافت</td>
<td>۹.۱۲±۰.۷۱</td>
<td>۹.۶۸±۰.۸۱</td>
<td>۸.۶۰±۰.۷۹</td>
</tr>
<tr>
<td>ضریب برداشت نازک بودن</td>
<td>۳۶.۷۹±۹.۱۸</td>
<td>۷۹.۷۲±۱۰.۲۳</td>
<td>۹۲.۵۴±۱۱.۴۸</td>
</tr>
</tbody>
</table>
در شرایط تنش خشکی نیز موقعیت زنوتیب‌ها براساس دو عامل اصلی اول و دوم بررسی شد (شکل ۲) و زنوتیب‌هایی در جدول ۱۱، ۱۲، ۲۷، ۳۶، ۳۷، ۴۰، ۵۰، ۵۳، ۱۳۸۹ و ۱۳۹۰ همرنگ با زنوتیب‌های شاهد جم.

شکل ۱- پراکنش زنوتیب‌های نخود کابلی براساس دو عامل اصلی اول و دوم در شرایط بدون تنش

شکل ۲- پراکنش زنوتیب‌های نخود کابلی براساس دو عامل اصلی اول و دوم در شرایط تنش خشکی

به منظور تعیین قرآب زنوتیب‌ها و گروه‌بندی آنها بر مبنای صفات مورد بررسی، تجزیه خوش‌خیم‌های روشن UPGMA و با استفاده از روش فاصله اقلیدسی برای شرایط بدون تنش و تنش خشکی انجام شد (جدول‌های ۱۱ تا ۱۴). در شرایط بدون تنش، زنوتیب‌های مورد بررسی در ۳ گروه دسته‌بندی شدند که ۲۵ زنوتیب در گروه اول، ۳۸ زنوتیب در گروه دوم و یک زنوتیب در گروه سوم قرار گرفتند (جدول ۱۱). محاسبه میانگین و
است (2011) با توجه به میزان همبستگی های فنوتیپی، رگرسیون گام، تجزیه و انجام انحراف معیار براج هر گروه نشان داد که در شرایط بودن تنک و تزیب‌های گروه اول از نظر شاخص برای بستن مقادیر را داشته و در رابطه با صفات عمکرک داده تک بوته، تعداد دانه در بوته، تعداد غلاف‌های پر و عملکرد یولوزیک حد متوسط داشته و بیژن ۱۰۰ دانه، طول و عرض غلاف و طول و عرض دانه کمترین مقادیر را نشان دادند. تزیب‌های گروه دوم که تیزیب‌های شاهد جم و کورورش نیز در این گروه قرار داشتند، برای صفات تعداد روز تا گلدته و تعداد روز تا غلاف‌های بهترین مقادیر را داشتند. از سطح سطح گردش در این گروه صفتا چیزی از نظر صفات مهمی ماند. عملکرد دانه تنک بوته، تعداد دانه در بوته، تعداد غلاف‌های پر در بوته، وزن غلاف‌های پر و عملکرد یولوزیک بهترین میانگین را داشت. در شرایط تنک خشک‌کنی نیز تزیب‌های گروه دوم بررسی در ۳ گروه دستبندی شده (جدول ۱۲)، به‌طوری که ۶ تزیب‌در گروه اول، ۲۷ تزیب‌در گروه دوم و ۳۱ تزیب‌در گروه سوم قرار گرفتند. گروه‌های گروه اول از نظر صفات تعداد روز تا گلدته، تعداد روز تا رسیدگی، تعداد دانه در بوته، تعداد غلاف‌های پر در بوته، وزن غلاف‌های پر، عملکرد یولوزیک افزایش قدرت شاخصهای اصلی و عملکرد دانه تنک بوته بهترین مقادیر را دارا بودند. تزیب‌های گروه دوم به‌طوری که شاهد جم و کورورش در این گروه قرار داشتند برای اکثر صفات طول و عرض غلاف و طول و عرض دانه بهترین میانگین را داشتند و در صفت اکثریت صفات بهترین مقادیر را داشتند. نتایج حاصل از تجزیه خوشه‌ای جهت ارزیابی دقیقاً روابط بین تزیب‌های با روشهای مختلف نیز بررسی و مورد تأیید قرار گرفته.
هدلِ علَم سراعی ایزاى، خلذ چْاردّن، ؽوارُ ٣، پاییش١٣٩١

References

breeding lines by osmoregulation: relationship to grain yields in the field. Field Crops Res. 27: 61-70.

Effect of terminal drought stress on grain yield and yield components in Kabuli chickpea genotypes

Mohammadali-Pouryamchi, H.¹, M. R. Bihamta², S. A. Peighambari³ and M. R. Naghavi⁴

ABSTRACT

To assess the effects of terminal drought stress on phenological traits, grain yield, yield components, and to determine phenotypic variation and relationship between grain yield with other traits in 64 Kabuli genotypes an experiment was carried out using simple lattice design (8×8) under two conditions (terminal drought stress and normal) in 2011 at Research Field of Faculty of Agriculture, University of Tehran, Karaj, Iran. Results showed that there were significant differences among chickpea genotypes which revealed genetic variation for different traits. According to the results of phenotypic correlations, stepwise regression, path analysis for both normal and stress conditions, it can be concluded that, expected that biological yield and harvest index, seed and pod weight, number of filled pods, number of seed.plant⁻¹, 100 seed weight and number of seed.pod⁻¹ were the most important and effective traits affecting yield. Therefore selecting and breeding for these traits could be considered for improving grain yield in Kabuli chickpea. Based on factor analysis using data in both conditions four factors were selected that explained 78.96% and 81.6% of total variation under normal and drought stress conditions. The first and second factors were introduced as yield and yield component factors. Genotype grouping in both conditions was conducted using UPGMA method and the square Euclidean distance. Genotypes were grouped in three clusters in both conditions.

Keywords: Cluster analysis, Factor analysis, Kabuli chickpea, Path analysis, Stepwise regression and Terminal drought stress.