اُرتش خشکی انتهای فصل بر عملکرد و اجزای عملکرد زنوتیپ‌های نخود کابلی

Effect of terminal drought stress on grain yield and yield components of Kabuli chickpea genotypes

هادی محمدعلی پوریامچی، محمدرضا یی همتا، سید علی ییغمیری و محمدرضا یقوی

چکیده

به منظور بررسی اثر نتش خشکی انتهای فصل بر صفات فنولوژیک، عملکرد و اجزای عملکرد، تیمین تی انت‌دی و رابطه عملکرد تک بوته با سایر صفات مورد بررسی در ۱۴ آزمایشی در قلب طرح انس ساده (۸×۴) در شرایط بدون ننش و نتش خشکی در مزرعه تحقیقاتی دانشگاه خوارزمی همدان در سال زراعی ۱۳۸۹-۱۳۸۸ اجرا گردید. نتایج نشان داد که نشان دهنده تی‌نت‌یکی‌ی بین زنوتیپ‌ها می‌باشد. با توجه به نتایج حاصل از تجزیه همبستگی‌های فنولوژیکی، رگرسیون گام به گام، تجزیه علمی در هر دو شرایط بدون نتش و نتش خشکی می‌توان تجربه گرفت به‌طوری‌که از عملکرد پیلوزیک و شاخص برداشت صفات وزن غلاف‌های پر، تعداد غلاف‌های پر و تعداد دانه در بوته از جمله صفات مهم تأثیر گذاشته در عملکرد تک بوته می‌باشد. با توجه به اینکه برای این صفات بیشترین توزع می‌باشد، به‌طور معمول رسمی که می‌توان با انتخاب و اصلاح برای این صفات، عملکرد تک بوته را به‌طور مطلوبی افزایش داد. بر اساس تجزیه به‌طور همه در هر دو شرایط، جهار عامل دخل دانشگاه که در مجموع در شرایط بدون نتش برای ۷۸/۸۷ درصد از تغییرات کلا توجه کردند و در هر دو شرایط عامل اول و دوم به عنوان عملکرد و اجزای عملکرد عایشی، گروه‌بندی زنوتیپ‌ها بر اساس صفات مورد بررسی با روش UPGMA و محیط پژوهشگیری برای صفات محلی دو روشی در به‌گروه‌بندی نمود.

واژه‌های کلیدی: تجزیه به‌طور همه، تجزیه خوش‌بایی، تجزیه علمی، نتش خشکی، رگرسیون گام به گام و نخود کابلی.

Downloaded from agrobreedjournal.ir at 4:27 +0430 on Monday May 18th 2020
مقدمه

خشکی یکی از مهم‌ترین عوامل محدود کننده رشد گیاهان در سرتاسر جهان و شاخص نشان دهنده محیطی است. ایران با متوسط بارندگی حدود 250 میلی متر، یکی از متوسط بارندگی‌های جهان را دارد. بر اساس گزارش‌های فوق حدود 90 درصد از کشور ایران در نواحی خشک و نیمه‌خشک قرار دارد (FAO، 2010).

در بین گیاهان زراعی، خانواده حیواناتی از جمله نخود تنش‌های مهمی در تأمین نیازهای غذایی جوامع بشری، به ویژه در کشورهایی در حال توسعه آسیایی، آفریقایی و آمریکایی لاین دارند. اگرچه تعدادی از این گیاهان خوبی به شرایط دیمی تماشاگر به کتف‌دانه، ولی ظرفیت تولید آن‌ها اغلب بانی است. به طوری که در ایران، بیش از 98 درصد سطح زیر کشت و درصد تولید نخود به صورت دیم است، متوسط عملکرد آن ۳۵۰ کیلوگرم در هکتار می‌باشد، در صورتی که عملکرد آن در اراضی آبی ۱۱۱۱ کیلوگرم در هکتار گزارش شده است (Singh و Saxena, 1990).

افزایش اندام‌های، عملکرد دانه، عملکرد بیولوژیک و شاخص برداشت نخود را اجرای آزمایشات نسبت به شرایط نشان خشکی گزارش کرده‌اند. نتایج مطالعات نشان داده‌اند که در برخی از بیایان در تالاب با جهت انجام برای اصلاح مقدماتی به نشان‌های محیطی، به خصوص نشان‌های اصلی به به عنوان مناسب شرایط محیطی منطقه و دیاری عملکرد کمی Wery, sMorgane et al., 1991) و کیفی بالای دست یافته (1990). یا توجه داشته که عملکرد دانه صورتی است به ویژه مناسب برای صرفه‌جویی در نهایت یکسان دهد، ولی جویت ضرایب همبستگی بین صفات خاصاً رابطه...
انجام شد. همچنین رویانگی علت و معلولی صفات از طریق تجزیه علیست و تعبیه عوامل پنهان مؤثر بر عملکرد با استفاده از روش تجزیه به عامل‌ها انجام گرفت.

مواد و روش‌ها

در این تحقیق 62 زنوتیپ نخود کابلی به همراه دو شاهد محلی (کورکو و چم) از کلاسیون جنوبی پردیس کشاورزی و منابع طبیعی دانشگاه تهران انتحاب گردید. (جدول 1) و در قالب دو طرح لازم ساده (جدول 1)، به صورت جداگانه در شرایط آپی و نش خشکی اتفاق فصل مزروعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه تهران واقع در دو دانشکده کرد. به بررسی جغرافیاسی ۳۵ تا ۴۶ دقیقه شمارو و طول جغرافیایی ۵۰ درجه و ۵۸ دقیقه شرقی با ارتفاع ۱۱۱۷/۵ از سطح دریای سال زراعی ۱۳۸۹ کشت شدند.

پاساژ داده‌های سال، میانگین بارندگی سالانه محل اجرای آزمایش ۲۴۳ میلی‌متر و میزان کلی بارندگی در طول فصل رشد (فروردین تا پایان تیر) ۱۰/۷ میلی‌متر بود. در جدول ۲، تعدادی از معرفی‌های هواشناسی استفاده می‌گردد در طول سال ۱۳۸۹ نشان داد. شده است. وظایف بهبود واقع شده در۵ سانتی‌متر در پاییز ۱۳۸۹ آغاز و قبل از کشت آماده سازی زمین با اجرای یکی خشک و بهاره دیسک انجام شد. کشت گردید به صورت دستی انجام گرفت و هر کرت آزمایشی شامل دو وار در طول ۲ متر و ۱/۵ فاصله خطوط ۵۰ سانتی‌متر و فاصله بهتر بر روی خطوط ۱۰ سانتی‌متر و فاصله بین دسر ۵ سانتی‌متر در نظر گرفته شد. در مراحل داشت، برای مبارزه با علف‌های هرز و چین، دستی صورت گرفت. زمانی که حدود ۹۰ درصد بونه‌های کرت‌ها رسدیه بودند، برداشت انجام شد.

صفات مورد بررسی شامل تعداد روز گل‌پذیری، تعداد روز دارای حداکثر، تعداد شاخه‌های اصلی، قطر شاخه اصلی در گره اول، تعداد گرهه، ارتفاع بونه، طول
جدول 1- اسمی و مشخصات 64 زنوتیپ نخود کابلی مورد بررسی

Table 1. Name and origin of 64 Kabuli chickpea genotypes

<table>
<thead>
<tr>
<th>کد زنوتیپ</th>
<th>شماره زنوتیپ</th>
<th>نام</th>
<th>مکان</th>
<th>کد زنوتیپ</th>
<th>شماره زنوتیپ</th>
<th>نام</th>
<th>مکان</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12-071-01834</td>
<td>Karaj</td>
<td>318</td>
<td>12-071-03846</td>
<td>Jiroft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12-071-01952</td>
<td>Karaj</td>
<td>323</td>
<td>12-071-03852</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12-071-01972</td>
<td>Karaj</td>
<td>325</td>
<td>12-071-03854</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>12-071-02090</td>
<td>Karaj</td>
<td>328</td>
<td>12-071-03859</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>12-071-01837</td>
<td>Ghazvin</td>
<td>335</td>
<td>12-071-03871</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>12-071-02270</td>
<td>Esfahan</td>
<td>345</td>
<td>12-071-03884</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>12-071-02316</td>
<td>Esfahan</td>
<td>356</td>
<td>12-071-03899</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>12-071-02351</td>
<td>Guchan</td>
<td>357</td>
<td>12-071-03900</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>12-071-02740</td>
<td>Shiraz</td>
<td>369</td>
<td>12-071-03915</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>12-071-02940</td>
<td>Ardabil</td>
<td>370</td>
<td>12-071-03916</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>12-071-06678</td>
<td>Mianeh</td>
<td>375</td>
<td>12-071-03922</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>12-071-03585</td>
<td>Karaj</td>
<td>394</td>
<td>12-071-03946</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>12-071-03718</td>
<td>Urmia</td>
<td>403</td>
<td>12-071-03753</td>
<td>Torbat Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>12-071-03746</td>
<td>Urmia</td>
<td>466</td>
<td>12-071-04043</td>
<td>Esfahan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>12-071-03885</td>
<td>Torbat Jam</td>
<td>473</td>
<td>12-071-04052</td>
<td>Dare Gaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>12-071-03641</td>
<td>Karaj</td>
<td>474</td>
<td>12-071-04053</td>
<td>Dare Gaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>12-071-03686</td>
<td>Urmia</td>
<td>478</td>
<td>12-071-04063</td>
<td>Esfahan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>12-071-03703</td>
<td>Urmia</td>
<td>490</td>
<td>12-071-04084</td>
<td>Ardabil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>12-071-03725</td>
<td>Urmia</td>
<td>492</td>
<td>12-071-04091</td>
<td>FAO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>12-071-03746</td>
<td>Urmia</td>
<td>508</td>
<td>12-071-06885</td>
<td>Urmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>12-071-03749</td>
<td>Urmia</td>
<td>511</td>
<td>12-071-06888</td>
<td>Urmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>12-071-03750</td>
<td>Urmia</td>
<td>512</td>
<td>12-071-06889</td>
<td>Urmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>12-071-03753</td>
<td>Urmia</td>
<td>525</td>
<td>12-071-06903</td>
<td>Urmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>12-071-03760</td>
<td>Jiroft</td>
<td>534</td>
<td>12-071-06912</td>
<td>Ardabil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>12-071-03776</td>
<td>Jiroft</td>
<td>552</td>
<td>12-071-06931</td>
<td>Miyaneh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>12-071-03788</td>
<td>Jiroft</td>
<td>555</td>
<td>12-071-06934</td>
<td>Urmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>12-071-03805</td>
<td>Jiroft</td>
<td>563</td>
<td>12-071-06942</td>
<td>Khoy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>12-071-03811</td>
<td>Jiroft</td>
<td>606</td>
<td>12-071-06985</td>
<td>Mahan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>12-071-03831</td>
<td>Jiroft</td>
<td>629</td>
<td>12-071-07007</td>
<td>Esfahan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>12-071-03832</td>
<td>Jiroft</td>
<td>642</td>
<td>12-071-07021</td>
<td>Bam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>12-071-03833</td>
<td>Jiroft</td>
<td>998</td>
<td>Control</td>
<td>Jam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>12-071-03845</td>
<td>Jiroft</td>
<td>999</td>
<td>Control</td>
<td>Korosh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*شماره زنوتیپ‌ها در بانک از نرده‌کشی و منابع طبیعی دانشگاه تهران

جدول 2- خصوصیات اقلیمی محل اجرای آزمایش (1389)

Table 2. Climatic parameters in experimental site (2010)

ماه	میانگین دمای حاصل حداقل حاصل استاندارد	میانگین نمای	میانگین رطوبت	میانگین سالات آفتابی در صورتی	میانگین رطوبت در صورتی							
Mar- Apr	12.6	54.0	5.1	57	7.52	3.56	7.52	3.56	7.52	3.56	7.52	3.56
Apr- May	17.6	47.3	6.5	54	7.6	8.21	7.6	8.21	7.6	8.21	7.6	8.21
Jun- Jul	29.1	0.0	12.87	33	11.7	17.69	11.7	17.69	11.7	17.69	11.7	17.69
Jul- Aug	27.3	0.0	11.78	35	11.24	17.42	11.24	17.42	11.24	17.42	11.24	17.42
Aug- Sep	24.3	0.0	9.21	39.8	10.48	13.94	10.48	13.94	10.48	13.94	10.48	13.94

۲۰۵
Table 3. Yield and yield reduction rate in Kabuli chickpea genotypes under normal and drought stress conditions

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Yp</th>
<th>Ys</th>
<th>Yr</th>
<th>Yp</th>
<th>Ys</th>
<th>Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.37</td>
<td>21.74</td>
<td>8.73</td>
<td>318</td>
<td>13.57</td>
<td>12.44</td>
</tr>
<tr>
<td>12</td>
<td>15.30</td>
<td>14.53</td>
<td>5.02</td>
<td>323</td>
<td>12.00</td>
<td>10.09</td>
</tr>
<tr>
<td>16</td>
<td>17.18</td>
<td>11.85</td>
<td>31.02</td>
<td>325</td>
<td>17.60</td>
<td>11.93</td>
</tr>
<tr>
<td>22</td>
<td>22.34</td>
<td>21.31</td>
<td>4.60</td>
<td>328</td>
<td>14.96</td>
<td>14.91</td>
</tr>
<tr>
<td>23</td>
<td>16.98</td>
<td>16.05</td>
<td>5.45</td>
<td>335</td>
<td>26.79</td>
<td>16.73</td>
</tr>
<tr>
<td>29</td>
<td>25.29</td>
<td>14.07</td>
<td>44.37</td>
<td>345</td>
<td>24.92</td>
<td>16.85</td>
</tr>
<tr>
<td>36</td>
<td>23.33</td>
<td>22.12</td>
<td>5.17</td>
<td>356</td>
<td>28.11</td>
<td>16.35</td>
</tr>
<tr>
<td>38</td>
<td>19.73</td>
<td>18.58</td>
<td>5.84</td>
<td>357</td>
<td>29.03</td>
<td>18.11</td>
</tr>
<tr>
<td>56</td>
<td>16.06</td>
<td>15.25</td>
<td>5.09</td>
<td>369</td>
<td>24.95</td>
<td>15.12</td>
</tr>
<tr>
<td>59</td>
<td>17.84</td>
<td>12.90</td>
<td>27.63</td>
<td>370</td>
<td>21.29</td>
<td>13.54</td>
</tr>
<tr>
<td>109</td>
<td>19.58</td>
<td>19.07</td>
<td>5.59</td>
<td>375</td>
<td>21.74</td>
<td>12.92</td>
</tr>
<tr>
<td>120</td>
<td>31.24</td>
<td>27.55</td>
<td>34.76</td>
<td>394</td>
<td>25.37</td>
<td>16.27</td>
</tr>
<tr>
<td>126</td>
<td>26.18</td>
<td>14.18</td>
<td>45.84</td>
<td>403</td>
<td>20.36</td>
<td>9.09</td>
</tr>
<tr>
<td>129</td>
<td>19.86</td>
<td>17.26</td>
<td>13.09</td>
<td>466</td>
<td>21.37</td>
<td>5.90</td>
</tr>
<tr>
<td>139</td>
<td>25.00</td>
<td>19.01</td>
<td>23.96</td>
<td>473</td>
<td>21.30</td>
<td>9.99</td>
</tr>
<tr>
<td>187</td>
<td>16.99</td>
<td>16.34</td>
<td>3.79</td>
<td>478</td>
<td>19.27</td>
<td>19.04</td>
</tr>
<tr>
<td>198</td>
<td>21.48</td>
<td>10.11</td>
<td>52.94</td>
<td>490</td>
<td>14.42</td>
<td>11.50</td>
</tr>
<tr>
<td>216</td>
<td>17.31</td>
<td>16.31</td>
<td>5.77</td>
<td>492</td>
<td>17.78</td>
<td>10.73</td>
</tr>
<tr>
<td>235</td>
<td>15.05</td>
<td>13.49</td>
<td>10.40</td>
<td>511</td>
<td>15.06</td>
<td>14.43</td>
</tr>
<tr>
<td>236</td>
<td>10.10</td>
<td>9.77</td>
<td>3.30</td>
<td>512</td>
<td>18.59</td>
<td>18.20</td>
</tr>
<tr>
<td>239</td>
<td>22.39</td>
<td>17.05</td>
<td>23.84</td>
<td>525</td>
<td>13.76</td>
<td>13.67</td>
</tr>
<tr>
<td>245</td>
<td>19.45</td>
<td>13.56</td>
<td>30.27</td>
<td>534</td>
<td>25.57</td>
<td>24.48</td>
</tr>
<tr>
<td>259</td>
<td>19.31</td>
<td>12.85</td>
<td>33.46</td>
<td>552</td>
<td>20.88</td>
<td>14.26</td>
</tr>
<tr>
<td>269</td>
<td>14.90</td>
<td>12.07</td>
<td>19.02</td>
<td>555</td>
<td>19.67</td>
<td>11.13</td>
</tr>
<tr>
<td>284</td>
<td>18.81</td>
<td>18.06</td>
<td>3.97</td>
<td>563</td>
<td>16.21</td>
<td>16.01</td>
</tr>
<tr>
<td>289</td>
<td>19.56</td>
<td>16.44</td>
<td>15.93</td>
<td>606</td>
<td>18.28</td>
<td>10.07</td>
</tr>
<tr>
<td>306</td>
<td>12.38</td>
<td>11.18</td>
<td>9.71</td>
<td>629</td>
<td>19.88</td>
<td>19.28</td>
</tr>
<tr>
<td>307</td>
<td>15.14</td>
<td>14.14</td>
<td>6.59</td>
<td>642</td>
<td>15.03</td>
<td>7.74</td>
</tr>
<tr>
<td>318</td>
<td>21.56</td>
<td>15.12</td>
<td>29.87</td>
<td>998</td>
<td>25.65</td>
<td>20.16</td>
</tr>
</tbody>
</table>

Yp= Potential yield; Ys= Stress yield; Yr= Yield reduction rate (%)
گول و همکاران (2001) نتیجه استفاده از تغییرات مربوط به عمکرکد، تجزیه رگرسیون گام به گام انگش شد. با توجه به اینکه صفات شاخص برداشت و عمکرکد پیش را به کارگیرنده عمکرکد دانه می‌باشد، به منظور شناسایی سایر صفات مؤثر بر عمکرکد دانه و تجزیه رگرسیون گام با گام استفاده از کلمات مربوط به عمکرکد و وسیع صفات مورد بررسی، وزن غلاف‌های پر اولین صفتی بود که وارد مدل شد (جدول 7) درصد از تغییرات عمکرکد دانه تا کنک تا توجه کرد.

به منظور اهمیت این صفات در تغییرات مربوط به عمکرکد، تجزیه رگرسیون گام به گام انگش شد. با توجه به اینکه صفات شاخص برداشت و عمکرکد پیش را به کارگیرنده عمکرکد دانه می‌باشد، به منظور شناسایی سایر صفات مؤثر بر عمکرکد دانه و تجزیه رگرسیون گام با گام استفاده از کلمات مربوط به عمکرکد و وسیع صفات مورد بررسی، وزن غلاف‌های پر اولین صفتی بود که وارد مدل شد (جدول 7) درصد از تغییرات عمکرکد دانه تا کنک تا توجه کرد.

به منظور اهمیت این صفات در تغییرات مربوط به عمکرکد، تجزیه رگرسیون گام به گام انگش شد. با توجه به اینکه صفات شاخص برداشت و عمکرکد پیش را به کارگیرنده عمکرکد دانه می‌باشد، به منظور شناسایی سایر صفات مؤثر بر عمکرکد دانه و تجزیه رگرسیون گام با گام استفاده از کلمات مربوط به عمکرکد و وسیع صفات مورد بررسی، وزن غلاف‌های پر اولین صفتی بود که وارد مدل شد (جدول 7) درصد از تغییرات عمکرکد دانه تا کنک تا توجه کرد.
 آزمون کرویت بازالت استفاده شد. برای تعیین اعتبار داده‌ها در دو شرایت بندون تنیشن و تنیشن خشکی داده‌ها به دو قسمت تصادفی تقسیم شدند. سپس تجزیه به عامل‌های برای قسمت دیجیتال انجام شد. با توجه به اینکه تابعی در دو گروه برای هر دو شرایت بندون تنیشن و تنیشن خشکی یکسان بود، پیش‌ترین تغییر افراد روی نتایج تشریح تجزیه به عامل‌ها در شرایت بندون تنیشن با استفاده از صفات مورد بررسی انجام شد و چهار عامل عبارت بود که بزرگ‌تر از یک تفاوت انجام شد که جمعاً از این 29 درصد از تغییرات کل داده‌ها را توجیه کرد (جدول 9). عامل اول حداکثر درصد از تغییرات را توجیه کرد که شامل صفات وزن صد را در ارتفاع بوده، طول و عرض غلاف و طول و عرض دانه باشد و عامل دوم به حداکثر درصد از تغییرات را توجیه کرد و همانند شرایت بندون تنیشن، صفات فونولوژیکی تعادل روز تا گلد گی و غلاف به‌پاره سبز می‌رسد که انتخاب براساس این دو عامل بیشترین تأثیر را در عامل‌های دانه که بوده در راه داشت و توزیع هم‌گریده شده بیشترین میزان عامل‌های دانه تک بوده در خواهد داشت. عامل اول حداکثر درصد تغییرات را توجیه کرد که شامل صفات فونولوژیکی تعادل روز و تا گلد گی و غلاف به‌پاره سبز می‌رسد. عامل تازه‌م حدود 9 درصد تغییرات را توجیه کرد که شامل صفات فونولوژیکی تعادل در راه داشت و توزیع بوده در راه‌نمای میزان بیشتر شناسه داشته دقت بیشتر در برآورد ورایانس می‌باشد (جاهنشوز، 2003) در شرایت بندون تنیشن میزان اشکارک اکثر صفات بالا بود

بر اساس درک‌های مناسب، عامل میزان اشکارک که با توجه به اینکه در هر دو شرایت بندون تنیشن و تنیشن خشکی داده‌ها را توجیه کردند و صفات
Table 4. Stepwise regression analysis for seed yield and other plant characteristics in Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>Step</th>
<th>Plant characteristics</th>
<th>Coefficients</th>
<th>R² adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seed and pod weight</td>
<td>a: 0.644**</td>
<td>0.740**</td>
<td>0.968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Main branch diameter</td>
<td>a: 2.688**</td>
<td>0.765**</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -0.521*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Plant height</td>
<td>a: 0.128**</td>
<td>0.754**</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -0.714**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Seed pod</td>
<td>a: -2.402**</td>
<td>0.759**</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -0.710**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>No. of main branch</td>
<td>a: -6.296</td>
<td>0.749**</td>
<td>0.978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -0.732**</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively

Table 5. Stepwise regression analysis after removing seed and pod weight in Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>Step</th>
<th>Plant characteristics</th>
<th>Coefficients</th>
<th>R² adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pod plant</td>
<td>a: 5.476*</td>
<td>0.154**</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100-seed weight</td>
<td>a: -8.944**</td>
<td>0.174**</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -0.699**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seed pod</td>
<td>a: -30.453**</td>
<td>0.202**</td>
<td>0.944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: 11.115**</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively

Table 6. Stepwise regression analysis for seed yield and other plant characteristics in Kabuli chickpea genotypes under drought stress condition

<table>
<thead>
<tr>
<th>Step</th>
<th>Plant characteristics</th>
<th>Coefficients</th>
<th>R² adj.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filled pods weight</td>
<td>a: 5.790**</td>
<td>0.505**</td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100-seed weight</td>
<td>a: 3.339**</td>
<td>0.464**</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: 0.225**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Seed plant</td>
<td>a: -8.329**</td>
<td>0.091**</td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: 0.730**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Seed pod</td>
<td>a: -9.896**</td>
<td>0.145**</td>
<td>0.944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b₁: 1.646**</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ns: Not significant
* and **: Significant at 5% and 1% probability levels, respectively

ns: غیر معنی دار
* و **: به ترتیب معنی دار در سطوح احتمال 1% و 5%
Table 7. Phenotypic path coefficient analysis for grain yield of Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>Plant characteristics</th>
<th>Phenotypic correlation coefficient (r_{p})</th>
<th>Direct effect</th>
<th>Indirect effect via</th>
<th>Residual=0.102</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Filled pods weight</td>
<td>0.984</td>
<td>0.547</td>
<td>-0.211</td>
<td>0.012</td>
</tr>
<tr>
<td>2. Main branch diameter</td>
<td>0.453</td>
<td>-0.041</td>
<td>0.278</td>
<td>-0.063</td>
</tr>
<tr>
<td>3. Plant height</td>
<td>0.416</td>
<td>0.031</td>
<td>0.212</td>
<td>-0.019</td>
</tr>
<tr>
<td>4. Seeds.pod<sup>-1</sup></td>
<td>-0.211</td>
<td>0.253</td>
<td>-0.136</td>
<td>0.008</td>
</tr>
<tr>
<td>5. No. of main branch</td>
<td>0.419</td>
<td>0.016</td>
<td>0.211</td>
<td>-0.013</td>
</tr>
<tr>
<td>6. Pod.plant<sup>-1</sup></td>
<td>0.637</td>
<td>0.386</td>
<td>0.357</td>
<td>0.003</td>
</tr>
<tr>
<td>7. 100-seed weight</td>
<td>0.573</td>
<td>0.446</td>
<td>0.304</td>
<td>-0.009</td>
</tr>
</tbody>
</table>

Table 8. Phenotypic path coefficient analysis for grain yield of Kabuli chickpea genotypes under drought stress condition

<table>
<thead>
<tr>
<th>Plant characteristics</th>
<th>Phenotypic correlation coefficient (r_{p})</th>
<th>Direct effect</th>
<th>Indirect effect via</th>
<th>Residual=0.227</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Filled seed weight</td>
<td>0.856</td>
<td>0.244</td>
<td>0.22</td>
<td>0.427</td>
</tr>
<tr>
<td>2. 100-seed weight</td>
<td>0.472</td>
<td>0.858</td>
<td>0.062</td>
<td>-0.398</td>
</tr>
<tr>
<td>3. Seed.pod<sup>-1</sup></td>
<td>0.472</td>
<td>0.757</td>
<td>0.138</td>
<td>-0.451</td>
</tr>
<tr>
<td>4. Seed.pod<sup>-1</sup></td>
<td>-0.246</td>
<td>0.095</td>
<td>-0.095</td>
<td>0.212</td>
</tr>
</tbody>
</table>
جدول 9- تجزیه به عامل ها با چرخ پاییژن استخوان در شرایط بیشتر

| متغیر | عامل اول (First) | عامل دوم (Second) | عامل سوم (Third) | عامل چهارم (Fourth) | میزان اشتراک | رپتریت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to 50% flowering</td>
<td>-0.037</td>
<td>-0.071</td>
<td>0.892</td>
<td>0.141</td>
<td>0.822</td>
<td></td>
</tr>
<tr>
<td>Days to 50% podding</td>
<td>-0.093</td>
<td>-0.104</td>
<td>0.878</td>
<td>-0.081</td>
<td>0.798</td>
<td></td>
</tr>
<tr>
<td>No. of seed/plant</td>
<td>-0.565</td>
<td>0.742</td>
<td>0.032</td>
<td>-0.315</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>Pod/plant</td>
<td>-0.297</td>
<td>0.884</td>
<td>-0.122</td>
<td>0.143</td>
<td>0.905</td>
<td></td>
</tr>
<tr>
<td>100 Seed weight</td>
<td>0.882</td>
<td>0.114</td>
<td>-0.314</td>
<td>0.148</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>Filled pods weight</td>
<td>0.408</td>
<td>0.846</td>
<td>-0.261</td>
<td>-0.071</td>
<td>0.956</td>
<td></td>
</tr>
<tr>
<td>Biological yield</td>
<td>0.271</td>
<td>0.849</td>
<td>-0.008</td>
<td>0.291</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>Seed yield</td>
<td>0.397</td>
<td>0.834</td>
<td>-0.299</td>
<td>-0.112</td>
<td>0.956</td>
<td></td>
</tr>
<tr>
<td>Harvest index</td>
<td>0.159</td>
<td>0.021</td>
<td>-0.342</td>
<td>-0.792</td>
<td>0.778</td>
<td></td>
</tr>
<tr>
<td>Plant height</td>
<td>0.524</td>
<td>0.295</td>
<td>-0.074</td>
<td>0.209</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>No. of main branch</td>
<td>0.225</td>
<td>0.400</td>
<td>-0.092</td>
<td>0.490</td>
<td>0.459</td>
<td></td>
</tr>
<tr>
<td>Main branch diameter</td>
<td>0.323</td>
<td>0.621</td>
<td>0.249</td>
<td>0.200</td>
<td>0.592</td>
<td></td>
</tr>
<tr>
<td>Seed.pod</td>
<td>-0.420</td>
<td>-0.058</td>
<td>0.238</td>
<td>-0.759</td>
<td>0.812</td>
<td></td>
</tr>
<tr>
<td>Pod length</td>
<td>0.875</td>
<td>0.118</td>
<td>0.063</td>
<td>0.039</td>
<td>0.785</td>
<td></td>
</tr>
<tr>
<td>Pod width</td>
<td>0.923</td>
<td>0.092</td>
<td>0.064</td>
<td>-0.005</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td>Seed length</td>
<td>0.563</td>
<td>0.107</td>
<td>-0.482</td>
<td>0.402</td>
<td>0.723</td>
<td></td>
</tr>
<tr>
<td>Seed width</td>
<td>0.877</td>
<td>0.073</td>
<td>-0.157</td>
<td>0.079</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>6.433</td>
<td>3.396</td>
<td>2.094</td>
<td>1.501</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cumulative of variance (%)</td>
<td>37.839</td>
<td>57.818</td>
<td>70.133</td>
<td>78.962</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

جدول 10- تجزیه به عامل ها با چرخ پاییژن استخوان در شرایط بیشتر

| متغیر | عامل اول (First) | عامل دوم (Second) | عامل سوم (Third) | عامل چهارم (Fourth) | میزان اشتراک | رپتریت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to 50% flowering</td>
<td>0.033</td>
<td>-0.158</td>
<td>0.877</td>
<td>-0.146</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td>Days to 50% podding</td>
<td>-0.051</td>
<td>-0.120</td>
<td>0.837</td>
<td>-0.089</td>
<td>0.726</td>
<td></td>
</tr>
<tr>
<td>No. of seed/plant</td>
<td>0.851</td>
<td>-0.288</td>
<td>0.129</td>
<td>-0.367</td>
<td>0.958</td>
<td></td>
</tr>
<tr>
<td>Pod/plant</td>
<td>0.928</td>
<td>-0.163</td>
<td>0.128</td>
<td>0.132</td>
<td>0.921</td>
<td></td>
</tr>
<tr>
<td>100 Seed weight</td>
<td>-0.123</td>
<td>0.711</td>
<td>-0.377</td>
<td>0.421</td>
<td>0.840</td>
<td></td>
</tr>
<tr>
<td>Filled pods weight</td>
<td>0.881</td>
<td>0.352</td>
<td>-0.034</td>
<td>0.186</td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>Biological yield</td>
<td>0.891</td>
<td>0.344</td>
<td>0.163</td>
<td>0.145</td>
<td>0.959</td>
<td></td>
</tr>
<tr>
<td>Seed yield</td>
<td>0.754</td>
<td>0.437</td>
<td>-0.266</td>
<td>0.040</td>
<td>0.832</td>
<td></td>
</tr>
<tr>
<td>Harvest index</td>
<td>-0.391</td>
<td>-0.053</td>
<td>-0.655</td>
<td>-0.223</td>
<td>0.634</td>
<td></td>
</tr>
<tr>
<td>Plant height</td>
<td>0.555</td>
<td>0.324</td>
<td>-0.102</td>
<td>0.550</td>
<td>0.727</td>
<td></td>
</tr>
<tr>
<td>No. of main branch</td>
<td>0.642</td>
<td>-0.107</td>
<td>0.101</td>
<td>0.423</td>
<td>0.613</td>
<td></td>
</tr>
<tr>
<td>Main branch diameter</td>
<td>0.746</td>
<td>0.440</td>
<td>0.104</td>
<td>0.199</td>
<td>0.780</td>
<td></td>
</tr>
<tr>
<td>Seed.pod</td>
<td>-0.114</td>
<td>-0.204</td>
<td>-0.024</td>
<td>-0.887</td>
<td>0.860</td>
<td></td>
</tr>
<tr>
<td>Pod length</td>
<td>0.131</td>
<td>0.932</td>
<td>0.010</td>
<td>0.088</td>
<td>0.893</td>
<td></td>
</tr>
<tr>
<td>Pod width</td>
<td>0.126</td>
<td>0.905</td>
<td>-0.084</td>
<td>0.064</td>
<td>0.846</td>
<td></td>
</tr>
<tr>
<td>Seed length</td>
<td>0.227</td>
<td>0.480</td>
<td>-0.326</td>
<td>0.614</td>
<td>0.765</td>
<td></td>
</tr>
<tr>
<td>Seed width</td>
<td>0.146</td>
<td>0.807</td>
<td>-0.112</td>
<td>0.254</td>
<td>0.749</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>6.992</td>
<td>3.958</td>
<td>1.660</td>
<td>1.265</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cumulative of variance (%)</td>
<td>41.127</td>
<td>64.412</td>
<td>74.177</td>
<td>81.618</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 11. Cluster analysis for Kabuli chickpea genotypes under normal condition

<table>
<thead>
<tr>
<th>Plant characteristics</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to 50% flowering</td>
<td>93.6±0.23</td>
<td>93.6±0.11</td>
<td>93.5±0.00</td>
</tr>
<tr>
<td>Days to 50% podding</td>
<td>102.6±2.22</td>
<td>102.4±0.55</td>
<td>102.00</td>
</tr>
<tr>
<td>No. of seed.pod</td>
<td>137.9±18.18</td>
<td>96.4±12.59</td>
<td>176.88</td>
</tr>
<tr>
<td>Pod.plant</td>
<td>108.0±11.81</td>
<td>82.3±11.45</td>
<td>165.00</td>
</tr>
<tr>
<td>100 Seed weight</td>
<td>15.9±3.88</td>
<td>19.2±4.32</td>
<td>17.66</td>
</tr>
<tr>
<td>Filled pods weight</td>
<td>28.08±5.80</td>
<td>24.09±5.24</td>
<td>44.07</td>
</tr>
<tr>
<td>Biological yield</td>
<td>42.50±7.93</td>
<td>37.06±7.66</td>
<td>82.00</td>
</tr>
<tr>
<td>Seed yield</td>
<td>21.58±4.22</td>
<td>18.43±4.19</td>
<td>31.24</td>
</tr>
<tr>
<td>Harvest index</td>
<td>50.95±5.48</td>
<td>49.69±8.04</td>
<td>38.10</td>
</tr>
<tr>
<td>Plant height</td>
<td>42.8±2.78</td>
<td>42.85±3.91</td>
<td>37.13</td>
</tr>
<tr>
<td>No. of main branch</td>
<td>3.5±0.22</td>
<td>3.51±0.23</td>
<td>3.63</td>
</tr>
<tr>
<td>Main branch diameter</td>
<td>5.2±0.59</td>
<td>5.04±0.51</td>
<td>6.53</td>
</tr>
<tr>
<td>Seed.pod</td>
<td>1.29±0.19</td>
<td>1.19±0.19</td>
<td>1.07</td>
</tr>
<tr>
<td>Pod length</td>
<td>19.15±1.93</td>
<td>20.25±1.37</td>
<td>20.99</td>
</tr>
<tr>
<td>Pod width</td>
<td>9.12±0.81</td>
<td>9.76±0.87</td>
<td>9.94</td>
</tr>
<tr>
<td>Seed length</td>
<td>7.62±0.79</td>
<td>7.89±0.51</td>
<td>8.60</td>
</tr>
<tr>
<td>Seed width</td>
<td>5.78±0.52</td>
<td>6.13±0.44</td>
<td>6.18</td>
</tr>
</tbody>
</table>

Table 12. Cluster analysis for Kabuli chickpea genotypes under drought stress condition

<table>
<thead>
<tr>
<th>Plant characteristics</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days to 50% flowering</td>
<td>92.58±1.83</td>
<td>91.80±0.36</td>
<td>90.21±2.07</td>
</tr>
<tr>
<td>Days to 50% podding</td>
<td>100.08±1.80</td>
<td>99.94±2.44</td>
<td>99.10±2.46</td>
</tr>
<tr>
<td>No. of seed.pod</td>
<td>140.69±17.47</td>
<td>97.98±14.77</td>
<td>65.35±10.49</td>
</tr>
<tr>
<td>Pod.plant</td>
<td>120.04±19.86</td>
<td>79.54±11.48</td>
<td>56.65±11.22</td>
</tr>
<tr>
<td>100 Seed weight</td>
<td>8.68±3.14</td>
<td>13.15±5.09</td>
<td>16.12±4.14</td>
</tr>
<tr>
<td>Filled pods weight</td>
<td>28.97±8.57</td>
<td>19.71±6.03</td>
<td>14.77±4.80</td>
</tr>
<tr>
<td>Biological yield</td>
<td>55.77±18.64</td>
<td>39.79±10.13</td>
<td>29.17±7.60</td>
</tr>
<tr>
<td>Seed yield</td>
<td>17.92±5.17</td>
<td>16.44±4.04</td>
<td>13.12±3.24</td>
</tr>
<tr>
<td>Harvest index</td>
<td>33.95±10.70</td>
<td>42.12±6.78</td>
<td>45.93±7.69</td>
</tr>
<tr>
<td>Plant height</td>
<td>37.10±4.65</td>
<td>36.40±3.68</td>
<td>35.15±4.05</td>
</tr>
<tr>
<td>No. of main branch</td>
<td>3.74±0.53</td>
<td>3.52±0.34</td>
<td>3.21±0.35</td>
</tr>
<tr>
<td>Main branch diameter</td>
<td>5.89±1.52</td>
<td>5.11±0.64</td>
<td>4.65±0.56</td>
</tr>
<tr>
<td>Seed.pod</td>
<td>1.21±0.29</td>
<td>1.25±0.25</td>
<td>1.18±0.23</td>
</tr>
<tr>
<td>Pod length</td>
<td>19.37±2.06</td>
<td>19.46±1.98</td>
<td>19.98±1.57</td>
</tr>
<tr>
<td>Pod width</td>
<td>9.24±1.00</td>
<td>9.28±1.04</td>
<td>9.61±0.91</td>
</tr>
<tr>
<td>Seed length</td>
<td>7.73±0.74</td>
<td>7.66±0.55</td>
<td>7.84±0.68</td>
</tr>
<tr>
<td>Seed width</td>
<td>5.82±0.42</td>
<td>5.87±0.50</td>
<td>6.02±0.54</td>
</tr>
</tbody>
</table>
و کرورش که دارای عامل اول و دوم مثبت و بالاتری بودند، عملکرد دانه تک بوته بیشتری در شرایط تنش خشکی نیز نشان دادند.

در شرایط تنش خشکی نیز موقعیت زنوتیپ‌ها براساس دو عامل اصلی اول و دوم بررسی شد (شکل ۲) و زنوتیپ‌های ۲، ۲۲، ۱۱۰، ۲۱۹، ۲۳۶ و ۲۳۹ همراب با زنوتیپ‌های شاهد جم ۱۸۷، ۲۵۰، ۶۲۹ و ۳۶۲ همراب با زنوتیپ‌های

شکل ۱- پراکنش زنوتیپ‌های نخود کابلی براساس دو عامل اصلی اول و دوم در شرایط بدون تنش

Fig. 1. Distribution of Kabuli chickpea genotypes on the basis of first and second factors under normal condition

شکل ۲- پراکنش زنوتیپ‌های نخود کابلی براساس دو عامل اصلی اول و دوم در شرایط تنش خشکی

Fig. 2. Distribution of Kabuli chickpea genotypes on the basis of first and second factors under drought stress condition

به مظهر تعیین قرایت زنوتیپ‌ها و گروه‌بندی آن‌ها بر منابع صفات مورد بررسی، تجزیه‌خوشهای به روش UPGMA و با استفاده از مربع فاصله اقلیدسی برای شرایط بدون تنش و تنش خشکی انجام شد (جدول‌های ۱۱ و ۱۲).
بحثی از بوده این تحقیق از محل طرح تحقیقاتی دانشکده علوم و مهندسی کشاورزی دانشگاه تهران با شماره طرح ۸۹/۱۲/۱۶ مصوب مورخ ۷۱/۱۰/۱۶ در عنوان "بررسی توزیع زنده‌تعداد زن‌تهیه‌های لوبیای معمولی و توزیع کلکسیون‌های زن دانشگاه کشاورزی با نشانگرهای SSR و همجنسی قطب علمی تحقیقات حیاتی دانشگاه تهران تأمین شده که تحقیک و قدردانی به عمل می‌آید.

"از نش خنکی انتدا فصل بر عملکرد...

احتراف معاری برای هر گروه نشن داد که در شرایط
بدو نشن زن‌تهیه‌های گروه اول از نظر شاخخص
براشت بیشترین مقدار را داشت و در رابطه با صفات
عملکرد دادن گنبد بوده، انتساب نشان دادن علامت
های بر در بوده، وزن علامت‌های بر و عملکرد
پیوستی‌های حد متوسطی داشته و برای وزن ۱۰۰ دانه،
طول و عرض علامت و طول و عرض دانه کمترین
مقدار را داشتند. زن‌تهیه‌های گروه دوم که
زن‌تهیه‌های شاهد جم و کورش نیز در این گروه قرار
داشتند، برای صفات تعیین تا گلدهی و تعیین روز
تا علامت‌های بیشترین مقدار را داشتند و در رابطه با
صفات عملکرد و اجزای عملکرد، کمترین مقدار را
داشتند و زن‌تهیه‌های سوم از نظر صفات مهمی مانند
عملکرد دانه نک و بوده، تعیین داده نشان داد، تعیین
علامت‌های بر در بوده، وزن علامت‌های بر و عملکرد
پیوستی‌های مبنی مانند داشت.

در شرایط نشن خشکی نیز زن‌تهیه‌های مورد
بررسی در ۳ گروه دست‌بندی شدند (جدول ۱۲)، به
طوری که ۶ زن‌تهیه در گروه اول، ۲۷ زن‌تهیه در
گروه دوم و ۳۱ زن‌تهیه در گروه سوم قرار گرفتند.
زن‌تهیه‌های گروه اول از نظر صفات تعیین تا
گلدهی، تعیین روز تا رشدی‌گی، تعیین داده در بوده،
تعیین علامت‌های بر در بوده، وزن علامت‌های بر، عملکرد، پیوستی‌های استفاده، تعیین طرح تحقیقاتی
اصلی و عملکرد دانه نک بوده بیشترین مقدار را دارا
بودن. زن‌تهیه‌های گروه دوم که زن‌تهیه‌های شاهد جم
و کورش در این گروه قرار داشتند برای اکثر صفات
مورد بررسی حد متوسطی داشتند. زن‌تهیه‌های
گروه سوم از نظر صفات وزن ۱۰۰ دانه، شاخخص
برادشت، طول و عرض غلاف و طول و عرض دانه
بیشترین مبتنی را داشتند، ولی برای سایر صفات
کمترین مقدار را داشتند. نتایج حاصل از تجزیه
خوشه‌ای جهت ارزیابی دقیق تر روابط بین زن‌تهیه‌ها با
روش‌های مختلف نیز بررسی و مورد تایید قرار گرفت.

یکی از

سایگانی‌زی

با کمک از

بیشترین

فقط عملاً.

محمدرضا پری پور یمچی، مهندسی کشاورزی و تحقیقات علمی و فنی، (Mohammad Ali Pour Yamchi et al., 2011)
References

breeding lines by osmoregulation: relationship to grain yields in the field. Field Crops Res. 27: 61-70.

Effect of terminal drought stress on grain yield and yield components in Kabuli chickpea genotypes

Mohammadali-Pouryamchi, H.\(^1\), M. R. Bihamta\(^2\), S. A. Peighambari\(^3\) and M. R. Naghavi\(^4\)

ABSTRACT

To assess the effects of terminal drought stress on phenological traits, grain yield, yield components, and to determine phenotypic variation and relationship between grain yield with other traits in 64 Kabuli genotypes an experiment was carried out using simple lattice design (8×8) under two conditions (terminal drought stress and normal) in 2011 at Research Field of Faculty of Agriculture, University of Tehran, Karaj, Iran. Results showed that there were significant differences among chickpea genotypes which revealed genetic variation for different traits. According to the results of phenotypic correlations, stepwise regression, path analysis for both normal and stress conditions, it can be concluded that, expected that biological yield and harvest index, seed and pod weight, number of filled pods, number of seed.plant\(^{-1}\), 100 seed weight and number of seed.pod\(^{-1}\) were the most important and effective traits affecting yield. Therefore selecting and breeding for these traits could be considered for improving grain yield in Kabuli chickpea. Based on factor analysis using data in both conditions four factors were selected that explained 78.96% and 81.6% of total variation under normal and drought stress conditions. The first and second factors were introduced as yield and yield component factors. Genotype grouping in both conditions was conducted using UPGMA method and the square Euclidean distance. Genotypes were grouped in three clusters in both conditions.

Keywords: Cluster analysis, Factor analysis, Kabuli chickpea, Path analysis, Stepwise regression and Terminal drought stress.

Received: April, 2011 Accepted: October, 2011

1- M.Sc. Student, Agricultural and Natural Resources Campus, University of Tehran, Karaj, Iran (Corresponding author) (Email: hadi_map22@yahoo.com)

2 & 4- Professor, Agricultural and Natural Resources Campus, University of Tehran, Karaj, Iran

3. Assistant Prof., Agricultural and Natural Resources Campus, University of Tehran, Karaj, Iran