Effect of plant densities on yield and yield components in four cultivars of wheat in Ahvaz region.

M. Tavakoli, M. Vaezian, Y. Zarei, A. M. Rahimpour

Summary

The effect of different plant densities on yield and yield components in four cultivars of wheat in the Ahvaz region was investigated. The results showed that increasing plant density increased the yield and yield components of wheat. The cultivar with the highest yield was the one grown at the highest plant density.

Keywords: Wheat, Plant Density, Yield Components, Ahvaz Region

Introduction

Wheat is one of the most important crops in the world and is widely grown in Iran. The Ahvaz region is one of the major wheat-producing regions in Iran. The purpose of this study was to investigate the effect of different plant densities on the yield and yield components of wheat in the Ahvaz region.

Materials and Methods

Four wheat cultivars were selected for the study: cultivar 1, cultivar 2, cultivar 3, and cultivar 4. The experiment was conducted in a randomized complete block design with three replications. The plant densities used were 150, 200, 250, and 300 plants per square meter. The experimental plots were 3 meters by 3 meters in size.

Results and Discussion

The results showed that increasing plant density increased the yield and yield components of wheat. The cultivar with the highest yield was the one grown at the highest plant density. The results also showed that the yield and yield components of the different cultivars were not significantly different at the same plant density.

Conclusion

Increasing plant density increased the yield and yield components of wheat. The cultivar with the highest yield was the one grown at the highest plant density. The results also showed that the yield and yield components of the different cultivars were not significantly different at the same plant density.

References


Received: 2020-06-20 Revised: 2020-07-15 Accepted: 2020-08-01

Editor: M. Tavakoli

Corresponding author: M. Tavakoli (Email: m.tavakoli@shirazu.ac.ir)

Acknowledgements

This research was supported by the Research Council of Shiraz University, Iran.

Conflict of Interest

The authors declare that there is no conflict of interest.

Copyright

© 2020, Agrobreed J. All rights reserved.

Supporting Information

None.

References


Received: 2020-06-20 Revised: 2020-07-15 Accepted: 2020-08-01

Editor: M. Tavakoli

Corresponding author: M. Tavakoli (Email: m.tavakoli@shirazu.ac.ir)

Acknowledgements

This research was supported by the Research Council of Shiraz University, Iran.

Conflict of Interest

The authors declare that there is no conflict of interest.

Copyright

© 2020, Agrobreed J. All rights reserved.

Supporting Information

None.

References


Received: 2020-06-20 Revised: 2020-07-15 Accepted: 2020-08-01

Editor: M. Tavakoli

Corresponding author: M. Tavakoli (Email: m.tavakoli@shirazu.ac.ir)

Acknowledgements

This research was supported by the Research Council of Shiraz University, Iran.

Conflict of Interest

The authors declare that there is no conflict of interest.

Copyright

© 2020, Agrobreed J. All rights reserved.

Supporting Information

None.

References


Received: 2020-06-20 Revised: 2020-07-15 Accepted: 2020-08-01

Editor: M. Tavakoli

Corresponding author: M. Tavakoli (Email: m.tavakoli@shirazu.ac.ir)

Acknowledgements

This research was supported by the Research Council of Shiraz University, Iran.

Conflict of Interest

The authors declare that there is no conflict of interest.

Copyright

© 2020, Agrobreed J. All rights reserved.

Supporting Information

None.