اثر تاریخ کاشت و تراکم بوته بر ارقام کلزا

Effect of sowing date and plant density on rapeseed varieties

*بیان‌الفضل فرجی

چکیده

به مخلل بررسی اثر تاریخ کاشت و تراکم بوته بر خصوصیات روشی، عملکرد و اجرا عملکرد ارقام کلزا از آزمایش به صورت اسپلیت پلات فاکتوریل در قالب بلوک‌های کامل تصادفی در چهار تکرار و در طی دو سال زراعی 1397-8 و 1398-9 در ابسته تحقيقات کشاورزی گند انجام داد. چهار تاریخ کاشت 20 بهمن 15 آبان، 30 آبان و 15 آذر در کرت‌های اصلی و دو رنگ باف (PF) و هاوالا 101 و دو قاشق رنگ 24 و 36 سانتی‌متری به صورت فاکتوریل در کرت‌های فرش قرار گرفتند. نتایج تجزیه و تحلیل فاکتوریل دو ساله داده‌های آزمایش نشان داد که با تأخیر در تاریخ کاشت ارتفاع گیاه، تعداد روز ناگذشته و رشد گیاهی و سرگرمی گیاه‌پزشکی، طول دوره گند و تعداد غلاف در بوته به طور منی داری کاهش یافت. هریبرد هاوالا 101 تعداد داده در غلاف و وزن هزار دانه بیشتری نسبت به رقم ساری کل تولید کرد. همچنین تعداد غلاف در بوته و تعداد دانه در قاصلا در رنگ 24 سانتی‌متری بیشتر 22 سانتی‌متری به طور منی داری بیشتر از فاصله رنگ 24 سانتی‌متری بود. در حالی که وزن هزار دانه در فاصله رنگ 24 سانتی‌متری بیشتر گردد. با تأخیر در تاریخ کاشت عملکرد دانه به طور منی داری کاهش یافت. تاریخ کاشت اول با 514 کیلوگرم در هكتار بیشترین و تاریخ کاشت چهارم با 232 کیلوگرم در هكتار بیشترین عملکرد دانه را تولید کرد. هریبرد هاوالا 101 (با 139 کیلوگرم در هكتار) عملکرد دانه بیشتری از رقم ساری کل (با 350 کیلوگرم در هكتار) تولید کرد. همچنین میزان عملکرد دانه در فاصله رنگ 24 و 36 سانتی‌متری به ترتیب 428 و 641 کیلوگرم در هكتار بود. تیمار تاریخ کاشت اول، هریبرد هاوالا 101 و فاصله رنگ 24 سانتی‌متری با 1172 کیلوگرم در هكتار بیشترین عملکرد دانه را تولید کرد.

واژه‌های کلیدی: کلزا، تاریخ کاشت، فاصله رنگ و رقم

مقدمه

نیل به خودکفایی در تولید روش و خروارکی

فهرست اکتکار می‌باشد. انتزاعی تولید روش و خروارکی

خروارکی را می‌توان علائم برآورده شده‌های کاشت و

اصلاح ارقام پرورشی، از طریق عرضی و توسعه کشت

گیاهان روغنی مانند کلزا، که مناسب کشت در طبیعت

اریان می‌باشد. نیز نیازمندی نمود (هورامزد, 1377). تولید نمو

اجرا عملکرد و زمان پندازد نمو ها در ارتباط با عوامل

تاریخ پایه‌ریزی: 1398/11/18

*عضو هیات علمی مرکز تحقیقات کشاورزی اسکان کاشان

14
در این گیاه، اثر مستقل آن بر محیط نکات کلیدی در درک چگونگی تغییر عملکرد گیاه به شمار می‌آید.
این امر امکان تغییر زنده‌نبودی یا عمل مدرنیتی مانند تایک کاشت را در جهت افزایش عملکرد دانه فراهم می‌آورد (کبیری و مکی گرگانی، 1368).

انتخاب تایک کاشت صحیح برای زراعت گیاهان اهمیت بسیار داشته و باید تایک کاشت بر اساس آب و هوای منطقه به صورت جدایگان بررسی و تعیین گردد (رحمی، 1370). هدف از تعیین تایک کاشت، بیابان نمونه‌های زمان کاشت رفع یا گرده‌ای از ارقام به گونه‌ای است که مجموعه‌های مناسب بوده و مرحله‌ای از رشد گیاه به سرعت مطلوب برخوردار گشته و به سرعت محیطی ناسازگار بهزودی ترگرد (خروج به پی، 1372). کلر با یابد شش هفته قبل از شروع اولین بخش آبادن کاشت شود. کاشت خیلی زود سبب جذب مقدار زیاد آب و مواد غذایی در طول فصل پاییز ور دنبالجی به شدت زیاد بوده می‌شود که این امر قدرت پایداری گیاه در زمستان را کاهش می‌دهد. از طرف دیگر کاشت با تأخیر نیز به چکش کم می‌ماند. گیاه و عدم ذوب کافی در دمای غلیظ باید بود. این سیاست خطر سرمای‌زدگی را افزایش می‌دهد (جاهدیفر و همکاران، 1380).

امکان‌پذیری‌های همکاران (1981) تناوب گردن که تأخیر در تایک کاشت سبب کاهش وزن هزار دانه، مقدار روز و عملکرد دانه می‌شود.

نتیجه‌گیری‌های تحقیقات موردنظر تبت‌شاده‌اند که تراکم حذف‌کننده‌های غربی در دامنه‌های کوه‌های غربی، زیست‌محیطی، فراهم‌آوری و استفاده می‌تواند باعث کاهش خطر از دریچه سنجاق در دامنه‌های کوه‌های غربی نمود.

درآمدهای نجات‌بخش و به راحتی ساختارهای سنجاقی در دامنه‌های کوه‌های غربی به‌طور گسترده‌ای باعث کاهش خطر از دریچه سنجاق در دامنه‌های کوه‌های غربی نمود.

درآمدهای نجات‌بخش و به راحتی ساختارهای سنجاقی در دامنه‌های کوه‌های غربی به‌طور گسترده‌ای باعث کاهش خطر از دریچه سنجاق در دامنه‌های کوه‌های غربی نمود.
پایان برداشت محصول، وزن هزار دانه محاسبه شد. برای تعیین عملکرد دانه از ریش های دویی که کرک به رعایت حاشیه، برداشت صورت گرفته و در نهایت عملکرد دانه محاسبه گردید. در طی فصل رشد از مراحل فیزیولوژی گیاه شامل تعداد زیادی از کامل به سرطان شدند. شروع و پایان قبلی (توسط ویژگی‌ها) تاریخ رشد سیستم فیزیولوژیک و طول دوره رشد گیاه بارداری شد. در پایان داده های دست آمده توسط نرم‌افزار آماری MSTATC مورد تجزیه و تحلیل قرار گرفته و پیشگیری داده های از پاسخ آزمون اصلی دانش این دانشگاه مورد بررسی قرار گرفت.

نتیجه و بحث

نتیجه اجرایی: نتایج بررسی میزان تأثیر خاک‌های آزمایشی در شکل و وزن متوسط دانه آزمایشی نشان داد که از تأثیر مختلفی از جمله عرض شمالی است. آزمایش به صورت اسپلیت بیان و با تکرار از تعداد 60، 600، 6000، 60000، 600000، 6000000 و 60000000 نمونه صورت گرفت. میزان پارامتر داده در سال و روز آزمایش به روش تریال و سوالات باینالیز گردید. در نتیجه تعداد گیاه خاک از سه صفر تا 30 سانتیمتر از صفحه خاک که به سبب ثبات و از دست آمده نتایج حاصل، مقیاس گیاههای پیشنهادی به صورت گرفت. میزان پارامتر داده شد. مقدار کورک بدون زیر گزارش که در این صورت به 70 کیلوگرم در هکتار ارتفاع و به مقدار 800 هزار پاک پودر در تمام عرصه‌های گیاه سالانه به یک چهارم در مهلک شروع به فاصله بین آزمایش بدون دار نیست. اثر فاصله شفاف کلیه با تأثیرات گیاهی از نظر آماری معنی دار بود.

ب- انتخاب روش تکرار کلمه و حل‌سیمی فیزیولوژیک: اثر اجرایی تاریخ کاشت و رطوبت بر تعداد زیادی سبز نشان داد که از سبزی که گیاه کاهش گرفت. به نظر می‌رسد که وجود گرما و تنش خنثی در اواخر فصل رشد و تمایل گیاه به اندازه مطلوب زندگی گردیده و عدم بروخورند آن با عوامل نامی این محیطی، دلیل اصلی این امر باشد. در نوع پیک مکانیسم فیزیولوژیک در گیاهان
کثر تاریخ کاشت و نرخ کمی بونه بر اساس کیفیت

زراعت سپی می‌شود که گیاهان حفظ یافتد و ادامه نسل
خود را ادامه داده و تولید بیشتر نشان دهد
(فراچندر و همکاران، 2013). تاثیر کاشت اول و
چهارم به ترتیب بیشتر و کمترین تعداد روز سرخور
گلدهی و سردمگی فیزیولوژیک را به خود اختصاص
داده (جدول 2). به همین جهت، روز سرخور گلدهی و
سردمگی فیزیولوژیک آن به ترتیب 10 و 7 روز کمتر بود. اثر
قابلیت رشد کاشت بر تعداد روز سرخور گلدهی و
سردمگی فیزیولوژیک را بین دو مورد نشان می‌دهد.

بر طول دوره گلدهی تحت
تاثیر تاریخ کاشت و رقم در سطح یک درصد قرار
گرفت. در حالی که اثر فاصله ریفی کاشت بر طول
دوره گلدهی معنی دار نبود (جدول 1). شروع
گلدهی زودتر در تاریخ کاشت زودتر و هم چنین
در هریود ماکور ۴۰۱ سبب گردد، در صورتی که به علت
بخشی از برد، شرایط، و فاقد را در مدت کمی در
ثبت قرار گرفتند. در حالی که در شرایط مکش فاصله
گلدهی آن با شرایط گرمی می‌باشد و در نتیجه
طول دوره گلدهی آن کاهش یافته است (جدول 2).

ت- تعداد غلاف در بوته: تاثیر تاریخ کاشت و فاصله
ریفی بر تعداد غلاف در بوته در سطح یک درصد
معنی دار می‌باشد. در حالی که اثر رقم بر تعداد غلاف
در بوته از نظر آماری معنی دار نشد (جدول 1). تاریخ
کاشت اول و چهارم به ترتیب بیشتر و کمترین تعداد
غلاف در بوته را به خود اختصاص داده. این تاثیر
کاشت سوم و چهارم از نظر تعداد غلاف در بوته
اختلال آماری معنی داری مشاهده نگردید. فاصله
ریفی ۲۳ سانتی‌متر به دلیل بهره‌گیری از تراکم بوته
کمتر (۷۸ بوته در مریخ) تعداد غلاف در بوته
بیشتر و نسبت به فاصله ریفی ۴۴ سانتی‌متر (۳۸ بوته در
مریخ) تولید کرد (جدول 2).
<table>
<thead>
<tr>
<th>Variety</th>
<th>Days to 50% germination</th>
<th>Days to 75% germination</th>
<th>Days to 90% germination</th>
<th>Days to 100% germination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(day)</td>
<td>(day)</td>
<td>(day)</td>
<td>(day)</td>
</tr>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm)</td>
</tr>
<tr>
<td>A</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>28</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>29</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>E</td>
<td>26</td>
<td>30</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>F</td>
<td>27</td>
<td>31</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>32</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 1. Analysis of variance for germination, yield and yield components of rapeseed.
Table 2. The effect of expansion increments on the mean of vegetative elements, yield and yield composition of accessions.

<table>
<thead>
<tr>
<th>Treatment (cm)</th>
<th>Day (day)</th>
<th>Day to dormancy (day)</th>
<th>Dormant period (day)</th>
<th>Plasmolysis of 1000 grains</th>
<th>Viable seed yield per plot (kg)</th>
<th>Viability of seed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Oct 6</td>
<td>Nov 14</td>
<td>9</td>
<td>95</td>
<td>101.3</td>
<td>92%</td>
</tr>
<tr>
<td>1.0</td>
<td>Nov 14</td>
<td>Dec 2</td>
<td>27.4</td>
<td>96</td>
<td>147.4</td>
<td>98%</td>
</tr>
<tr>
<td>1.5</td>
<td>Nov 21</td>
<td>Jan 9</td>
<td>30.2</td>
<td>99</td>
<td>158</td>
<td>97%</td>
</tr>
<tr>
<td>2.0</td>
<td>Jan 9</td>
<td>Feb 23</td>
<td>32.6</td>
<td>100</td>
<td>172</td>
<td>98%</td>
</tr>
</tbody>
</table>
Table 3. The interaction of some dates, treatments, and cultivars on the mean of vegetative characters, yield and yield components of rapeseed.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Day (a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 6th & February 4th (a)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (b)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (c)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (d)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (e)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (f)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (g)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (h)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (i)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Dec. 6th & February 4th (j)</td>
<td>98</td>
<td>88</td>
<td>88</td>
<td>141</td>
<td>141</td>
<td>98</td>
<td>106</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
</tbody>
</table>
کتر تاریخ کاشت و تراکم بونه بر اساس گاز

گرمای اوایل فصل رشد، رشد رویش سریع و مناسب
قبل از گلدهی و طول دوره رشد کافی، نواصع بالاترین
تعادل غلاف در بونه و در نهایت بالاترین عملکرد دانه
را تولید کرد. کمک میزان عملکرد دانه مربوط
به تاریخ کاشت چهارم بوده گرچه بین تاریخ های
کاشت یک و دوم هم چنین سوم و چهارم اختلاف
آماری معنی داری در نظر عملکرد دانه مشاهده نگردید.

نتایج حاصل از آزمایش نشان داد که به ازای ۵۰ روز
تأخیر در تاریخ کاشت از ۳۰ مه ماه ارتفاع ۱۵ آذر ماه
عملکرد دانه به میزان ۱۷۳ کیلوگرم در هکتار کاهش
یافته است. در واقع میزان کاهش عملکرد به ازا هر روز
تأخیر در تاریخ کاشت متوسط ۲۸/۷ کیلوگرم در هکتار
بود. هریصد هایا ۴۱ عملکرد دانه بیشتر نسبت به
فواصل تأخیر روز و ۲۴ ساعت در گروهی که از کاسپیان
در فاصله روز ریفی ۲۴ ساعت‌ام از فاصله ریفی ۳۲
سانتی‌متر بود، بالا فاصله ریفی ۲۴ ساعت‌ام به دلیل بهره

References

احمدی، م. ر. ۱۳۷۰. ویژگی‌های بیانی و پاره‌ای از مسائل اساسی کشت گیاه رؤوگی کلزا. مجله زیتون. شماره های
۱۰۵ و ۱۰۴.
باقری، م. ۱۳۷۹. گزارش نهایی طرح بررسی انحرافات تاریخ و تراکم کاشت بر عملکرد و ابعاد عملکرد کلزا یازده
به چهارم ۱۳۷۸. کلزا بر نوع زراعی و به زراعی. به خصوص تحقیقات اصلاح و بهبود نهال و بذر. مرکز تحقیقات کشاورزی
استان گلستان.
جاودافر، ف. د. رویسی و س. رحمان‌پور. ۱۳۸۰. گردد در سال و س. رحمان‌پور. ۱۳۸۰. گردد در سال و
جریان دو و س. در سال. اشاره‌های زراعی. اشارات جهاد دانشگاهی صنعتی اصفهان:
فرانکلین، بی. آ. بالی، بی. بلیس، بی. آل. فیشل. ۱۳۷۲. فیزیولوژی گیاهان زراعی، ترجمه: سربلند، غمخ. و ع.
کورچکی. اشارات جهاد دانشگاهی مشهد.
کورچکی. اشارات جهاد دانشگاهی مشهد.
رویسی و س. خاوشی. اشارات جهاد دانشگاهی مشهد.
رویسی و س. خاوشی. اشارات جهاد دانشگاهی مشهد.
هویلز، ام. آ. چی. ۱۳۷۵. تغذیه گیاه رؤوگی کلزا. ترجمه: احمدی، م. ر. و ف. جاودافر. شرکت سهامی خاص کشت و

