مقاله انتقال مجدد ماده خشک و نیتروژن در ارقام برنج (Oryza sativa L.) در تاریخ‌های مختلف نشاء کاری

نگهداری

همت اله بتردشتی، زین العابدین طهماسبی سروستانی، و مرتضی نصیری

چکیده

به منظور مطالعه انتقال مجدد ماده خشک و نیتروژن در تاریخ‌های مختلف نشاء کاری و تیمی‌سپرم آن در عملکرد دانه ارقام برنج، آزمایش در سال 1377 با استفاده از کثیف آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرای شد. فاکتورهای مورد مطالعه شامل تاریخ نشاء کاری در سه سطح (23 اردیبهشت، 2 خرداد و 11 خرداد) و رقم در چهار سطح (طیار، نعمت، ساحل و فجر) بود. نتایج به دست آمده نشان داد که رقم مختلف از نظر اندازه مجدد ماده خشک ساقه، بروق و برق پرچم اختلاف معنی‌داری داشتند. از نظر اندازه مجدد ماده خشک ساقه و برق پرچم، رقم فقط بین بلوک‌های مداد و رقم طیار کمترین مقدار را داشت. اما در مورد بروق‌ها، رقم فجر برای بلوک‌های مداد، بین سایر ارقام فاکتور مورد مطالعه نشان دادن این مقدار مجدد ماده خشک ساقه و برق پرچم در تاریخ‌های مختلف نشاء کاری متنوعی داشتند که این رقم‌ها بین تاریخ‌های مختلف نشاء کاری اختلاف معنی‌داری مشاهده شد. از نظر اندازه مجدد نیتروژن ارقام برنج اختلاف بسیار معنی‌داری داشتند. به طور کلی انتقال مجدد ماده خشک در سطح فجر به دست آمد. این مقدار به‌طور کلی برابر با رقم نشاء کاری بود. انتقال مجدد نیتروژن به دانه این مقدار برابر با رقم نشاء کاری بود و در سطح فجر نسبت به سطح دیگر بیشتر بود. انتقال مجدد نیتروژن در دانه از نظر میزان معنی‌داری داشتند که این مقدار دانه همگانی معنی داری مشاهده شد.

واژه‌های کلیدی: انتقال مجدد، برنج، تاریخ نشاء کاری، نیتروژن، عملکرد دانه

مقدمه

عملکرد دانه در غلظت عموماً تابع سه منبع کرویه‌های می‌باشد: فاکتور جاری، نشاء کاری، و انتقال آسیمیلات‌های ذخیره شده قبل از گل‌های به دانه که بیشتر در سطح فجر می‌شود ولی در سطح دیگر آسیمیلات‌های ذخیره شده موقت در سطح بعد از گل‌های

کوباتا ات‌ال. (1992) ذخایر موجود در باریندیم ها در مراحل نهایی ویلولان دانه که کرویه‌های می‌باشد: فاکتور جاری، نشاء کاری و سطح حداقلی که قرار داده شده به عنوان خصائص به‌طور کلی تواند مجدداً به صورت اندازه‌گیری مجدد دانه به دانه منتقل گردد (آشودگی، 1975) و کاربردهای دانه اغلب عمومی و معنی‌دار در سطح دیگر از گل‌های

تاریخ نشاء کاری: 1383/2/3

1. روش‌های بهتر برای ارائه مقالات علمی و درسی‌های در زمینه دانشگاه‌های دانشگاهی تربیت مدرس تهران
2. چاپ و نشر مقالات علمی و درسی‌های در زمینه دانشگاه‌های دانشگاهی تربیت مدرس تهران

41
مطالعه انتقال مجدد ماده حشک و نیترورن.

کمی از نیترورون موجود در برگ گیاه به ریشه منتقل می‌شود. از اطراف دیگر نیترورون به ریشه انتقال نشته و پرگ نیترورون دارای منابع توده‌دار هستند. به یک اندام انتقال مجدد مجدد مجدد مجدد رهگیری گیاهی گریز بی‌بی‌بی بوده و چنین اگر گیاهی که برگ‌های بی‌بی‌بی‌بی در هم پراکنده گرفت، مقدار نیترورون موجود در دل کاهش ییدا کرده است و نیترورون به نام دانه می‌باشد. نتایج مشاهده‌های تکثیرهای صورت گرفتهاند.

برای صحت پذیری انتقال مجدد روش‌های مختلف می‌باشد. در راه برگ‌های گیاهی بی‌بی‌بی‌بی و گریز بی‌بی‌بی‌بی، می‌توان به روش‌های مختلف توجه داشت. مقدار برگ‌های بی‌بی‌بی‌بی با مقدار برگ‌های بی‌بی‌بی‌بی از طریق نسبت بین 40 و 10 روز در درختان نگهداری شده و می‌توان در برگ‌های به‌وبدای 64 گرم در 12 روز و 60% برداشت 65 متری برای استفاده می‌باشد.
جدول 1- میزان بارندگی، متوسط درجه حرارت ماهانه، حداقل دما و رطوبت نسبی در طول دوره رشد گیاه

<table>
<thead>
<tr>
<th></th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>تیر</th>
<th>مرداد</th>
<th>شهریور</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (mm)</td>
<td>18.60</td>
<td>3.10</td>
<td>27.59</td>
<td>31.00</td>
<td>106.64</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>18.27</td>
<td>24.44</td>
<td>26.43</td>
<td>26.20</td>
<td>24.87</td>
</tr>
<tr>
<td>Maximum temperature (°C)</td>
<td>32.2</td>
<td>32.2</td>
<td>33.9</td>
<td>34.8</td>
<td>32.8</td>
</tr>
<tr>
<td>Minimum temperature (°C)</td>
<td>8</td>
<td>15</td>
<td>19.7</td>
<td>16.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>73.64</td>
<td>66.36</td>
<td>73.54</td>
<td>71.35</td>
<td>76.50</td>
</tr>
</tbody>
</table>

نتایج و بحث

انتقال مجدد ماده خشک

براساس نتایج حاصله در این مطالعه، تاثیر نشاء کاری بر انتقال مجدد ماده خشک به شدت تحت تأثیر افزایش دما و رطوبت نسبی می‌باشد. در نتیجه، میزان بارندگی و درجه حرارت ماهانه نیز اثرات قابل توجهی بر انتقال مجدد ماده خشک دارند. به یاد داشته که نشاء کاری تا زمانی که بارندگی مورد به قرار می‌گیرد می‌تواند به انتقال مجدد ماده خشک کمک کند. در نتیجه، میزان بارندگی و درجه حرارت ماهانه باید به‌طور کامل بررسی شوند تا در نتایج انتقال مجدد ماده خشک ساقه‌ای تاثیر بگذارد.

مقدار (0-5) بارندگی مکانیکی (کیلوگرم در هکتار) و مقدار (0-1) درجه حرارت ماهانه باید به‌طور کامل بررسی شوند تا در نتایج انتقال مجدد ماده خشک ساقه‌ای تاثیر بگذارد.

در نتیجه، میزان بارندگی و درجه حرارت ماهانه باید به‌طور کامل بررسی شوند تا در نتایج انتقال مجدد ماده خشک ساقه‌ای تاثیر بگذارد.
جدول ٢- میانگین مربعات تجزیه واریانس عملکرد دانه و صفات مربوط با آن

<table>
<thead>
<tr>
<th>S. O. V</th>
<th>نیروی مربع</th>
<th>عملکرد دانه</th>
<th>ضعف نیروی</th>
<th>مربعات آزمایی</th>
<th>سایر گیری ها</th>
<th>ترکیب گیری ها</th>
<th>نیتروژن گیری ها</th>
<th>نیتروژن گیری ها</th>
<th>پرگ یا پرچم</th>
<th>پرگ یا پرچم</th>
<th>پرگ یا پرچم</th>
<th>پرگ یا پرچم</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication (R)</td>
<td>تکرار</td>
<td>2</td>
<td>0.1</td>
<td>5211.11</td>
<td>408.33</td>
<td>412.45</td>
<td>81126.03</td>
<td>67778.62</td>
<td>3862.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplanting date (D)</td>
<td>تاریخ نیروی</td>
<td>2</td>
<td>0.7*</td>
<td>94344.44**</td>
<td>1020.80 n.s.</td>
<td>708.33*</td>
<td>299998.21**</td>
<td>54375.99**</td>
<td>21567.20*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety (V)</td>
<td>رقم</td>
<td>3</td>
<td>92.11**</td>
<td>26499.07**</td>
<td>5170.37**</td>
<td>6770.37**</td>
<td>16676.69**</td>
<td>34490.96**</td>
<td>126472.45**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D × V</td>
<td>اثرات چرخ</td>
<td>6</td>
<td>0.16 n.s.</td>
<td>74974.75**</td>
<td>2359.26**</td>
<td>1500.92*</td>
<td>184455.21**</td>
<td>108448.26**</td>
<td>20816.91*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>22</td>
<td>0.13</td>
<td>31074.75</td>
<td>1950.75</td>
<td>620.45</td>
<td>59428.43</td>
<td>33393.50</td>
<td>14612.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns, * and **: Non-significant, significant at the 5% and 1% of levels of probability, respectively.

جدول ٣- میانگین های مرتب به تغییرات بزرگی ساختمان و دانه از نظر پرگ یا پرچم در بالای گل داری (کیلوگرم در هکتار)

<table>
<thead>
<tr>
<th>عامل</th>
<th>Remobilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stem</td>
</tr>
<tr>
<td></td>
<td>سایر گیری ها</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplanting date</td>
<td>نیروی</td>
</tr>
<tr>
<td>May 13 1998</td>
<td>نیروی</td>
</tr>
<tr>
<td>May 23 1998</td>
<td>میلان</td>
</tr>
<tr>
<td>June 1 1998</td>
<td>میلان</td>
</tr>
<tr>
<td>Variety</td>
<td>رقم</td>
</tr>
<tr>
<td>Tarom</td>
<td>رقم</td>
</tr>
<tr>
<td>Nemat</td>
<td>رقم</td>
</tr>
<tr>
<td>Sahel</td>
<td>رقم</td>
</tr>
</tbody>
</table>

Numbers in parenthesis show the proportion of dry matter remobilization (%) in grain yield.

Mean follows by the same letters in each column are not significantly different at the 5% level of probability.
<table>
<thead>
<tr>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.05</td>
<td>1.1</td>
<td>1.6</td>
<td>0.2</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>35</td>
<td>0.05</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>40</td>
<td>0.06</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>45</td>
<td>0.07</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>50</td>
<td>0.09</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Table 5. Average values for the trend and period time in different treatment (kg/day).

Numbers in parentheses show the proportion of incorporation of nitrogen (kg) in different

Table 4. Nitrogen changes from different parts of the soil during incorporation into humus (kg/ha).

Date	Period	Total	Other Areas	Others	Seem	Remain
June 1 | 8661 | 1.36 | 0.07 | 0.48 | 0.09 | 0.13 | 0.12 | 0.06 | 0.10 | 0.17 | 0.08 | 0.05
May 31 | 8661 | 1.36 | 0.07 | 0.48 | 0.09 | 0.13 | 0.12 | 0.06 | 0.10 | 0.17 | 0.08 | 0.05
April 1 | 8661 | 1.36 | 0.07 | 0.48 | 0.09 | 0.13 | 0.12 | 0.06 | 0.10 | 0.17 | 0.08 | 0.05
بی ترتیب بیشترین و کمترین مقدار را دارا بودند (جدول ۴). کیانداردو و همکاران (۱۹۹۴) نشان داده که این ارقام ها بین زرتون نیتروزون و بیش‌تر گیاهی مختلف در میزان و مصرف نیتروزون و عللکرد دانه تفاوت‌هایی وجود دارد. در آزمایش‌های شده توسط نزدیک مشخص شد (Souza et al., ۱۹۹۸) انتقال مقدار بیشتری (نیتروزون) را داشت اما عرفانی (۱۳۷۴) گزارش داد که انتقال نیتروزون در ارقام پاک‌ترین نسبت به ارقام پاک‌ترین بیشتر است.

انتقال مجدد بیشتری پرچم تاریخ ناهم‌اندازی اثر معنی‌داری در روش انتقال مجدد بیشتری نیتروزون یافته شد که این مقدار بیشتری پرچم در نیتروزون دارای بودن (جدول ۴) بوده است و همکاران (۱۹۹۴) نشان دادند که این ارقام بگونه‌ای با هم تفاوت‌های معنی‌داری دارا بودند. در همین زمینه سوزا و همکاران (۱۹۹۸) نشان دادند که در مراحل زایشی با عناوین مفرغی برای نیتروزون بانهای رقابت کرده چیپانی و در نهایت این امر بیشتر در تاریخ‌های مختلف نشان داد و با اکتشافاتی از نظر نشان دادند (جدول ۴). در انتقال مجدد بیشتری نیتروزون با متساوی بیشتری، زمره‌های مختلف انتقال مجدد بیشتری نیتروزون را دارا بودند (جدول ۴).

نتیجه‌گیری

نتیجه‌گیری از تاریخ ناهم‌اندازی اثر معنی‌داری در روش انتقال مجدد بیشتری نیتروزون با هم تفاوت‌های معنی‌داری دارا بوده که این امر در نتیجه ناملموسی و مصرف نیتروزون در مراحل زایشی با عناوین مفرغی برای نیتروزون بانهای رقابت کرده چیپانی و در نهایت این امر بیشتر در تاریخ‌های مختلف نشان داد و با اکتشافاتی از نظر نشان دادند (جدول ۴).
آزمایش وادا و همکاران (1993) که اختلاف در بزرگ بی رگ با اختلاف مقدار انتقال
تیترژن از پهنگ بی رگ به دانه مربوط بود، همچنین وادا
و بیک ایجاد مصرفی
(Wada and Wada, 1991) که مصرفی تیترژنی که انرژی مصرفی
به خورشید مصرفی می‌کند، مصرفی ضریب همبستگی
می‌یافتید. اثر موثر در بررسی ارتباط بین انتقال مصرفی
تیترژن و بیک در تحقیقی مختلف نشان داد که این ارتباط
بسیار معنی‌دار بود (جدول 4).

نتیجه‌گیری
جدول 4 آزمایش‌های 2 و 3 هم انتقال مصرفی را در آزمایشات
خشک و مانند در آزمایش 1 نشان نمی‌دهد. بر اساس نتایج
جایگاه یافته در ستون انتقال مصرفی در میان 4 آزمایش
مستقل و همبستگی (Marschner, 1993) نشان داد که برای در
نحوه تغییر دهانه اثر بی‌پرگ در این آزمایش مشخص نمی‌شود که
انتقال مصرفی متفاوت بر اساس مصرفی در این آزمایش مشخص
شود. در این آزمایش مشخص شد که انتقال مصرفی تیترژن

<table>
<thead>
<tr>
<th>Trait</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen remobilization</td>
<td>0.44 **</td>
</tr>
<tr>
<td>Dry matter remobilization</td>
<td>0.12 ns</td>
</tr>
</tbody>
</table>

ns, * and **: Non-significant, significant at the 5% and 1% levels of probability, respectively.

אין תכנית להפעלת כיתת מ🏀 לשנת 1983.}

** با عملکرد دانه در آزمایش همبستگی محاسبه و معنی‌دار بود (جدول 2). اما بین انتقال مصرفی مصرفی و مصرفی بیک همبستگی معنی‌داری مشاهده نگردید. بکیکی از نکاتی که در مطالعه

* انتقال مصرفی دانه‌های خشک و سایر دانه‌هایی به دانه در مرحله

برخوردار بود، یک شرکت مصرفی
زیاد برای پرورش نهاد است. بنابراین به علت نیاز

53
مقایسه انقلاب مجدد هفه دانه خشک و نیتروژن

اندام های مختلف رفتاری مشاهده شده است که موجب داشتن بخش عمده‌ای از
نیتروژن از خود نشان داده است. رقم نموداری که می‌تواند نیتروژن از سطح، سایر
برگ‌ها و برگ‌های چرب خود (کل اندازه‌هایی) به صورت
انقلای مجدد به دانه منتقل نشود. به نظر می‌رسد
مطالعات داده نشده که این انقباضات را در ارگان مختلف در برنج
حتی زمان درخت که شبکه کرویی در ها و
نیتروژن در سطح و سایر استفاده‌های روشی کل از گل‌دهی
در برنج و تغییراتی از انتقال آن ها به دانه با بیش
به انتقال پایدار.

References

منابع مورد استفاده

1. استوسفک، ان. 1375. شناخت بیانیه تولید محصولات زراعی (نگرشی افکار زراعی). ترجمه: کوچکی، او. و
ج. خلقلی. انتشارات دانشگاه فردوسی مشهد. 536 ص.
2. اسلامی، اکبر. 1373. مبانی زیست‌پزشکی اصلاح نباتات. ترجمه: حمیدی، ح. و. م. بینابی. چاپ اول. انتشارات نشر آموزش
کشاورزی. 344 ص.
3. ایزدی، علی. 1369. زیست‌پزشکی گیاهان زراعی. ترجمه: موسوی، محمد. و. م. مجتهدی. انتشارات مرکز نشر انتشاراتی.
4. دانشگاه تهران. 431 ص.
6. فابریزی، ن. 1374. فناوری عملکرد گیاهان زراعی. ترجمه: دمگانی، ع. و. م. کوچکی. انتشارات جهاد دانشگاهی. 387 ص.
8. توسی، م. 1372. اهمیت برگ چرب در عملکرد برنج. پایان نامه کارشناسی ارشد. دانشگاه تهران.

41: 226-234.

Yoshida, S. 1983. Rice symposium on potential productivity of field crops under different environments. International Rice Research Institute, 103-129.