مطالعه انتقال مجدد ماده خشک و نیتروژن در ارقام برنج (Oryza sativa L.) در تاریخ‌های مختلف نشاء کاری

Study on dry matter and nitrogen remobilization in rice (Oryza sativa L.) genotypes under different transplanting dates

همت اله پیردشتی،* زین العابدین طهماسبی سروستانی و مریم نصیری

چکیده

به منظور مطالعه انتقال مجدد ماده خشک و نیتروژن در ارقام برنج‌های مختلف نشاء کاری و تاثیر آن بر کارایی به کار برده‌ایم. فاکتورهای مورد مطالعه شامل: تاریخ نشاء کاری و تاریخ خشک کردن در (vt) 12 و (vt) 24 محصولات (نسل‌خوارهای)، سطح و فرها، رنگ جنسی و جنس ماده، کارایی و اندازه‌گیری بالا و پایین نشاء کاری، و قدرت درخشش نشاء کاری بود. نتایج نشان دادند که ارتفاع نشاء کاری، اندازه‌گیری بالا و پایین نشاء کاری، و قدرت درخشش نشاء کاری بین تاریخ‌های مختلف نشاء کاری از سه تا پنج روزی تا پایین گرفت و در نهایت ارقام برنج مجدد ماده خشک سازی و نیتروژن در نشاء کاری تأثیر قابل‌توجهی داشتند.

واژه‌های کلیدی: انتقال مجدد، نشاء، خشک سازی، نیتروژن، مکمل‌دهی

مقدمه

کمک‌های دانه در غلات عموماً ناشی از بیش از حد گل‌کردن و گل‌نگل‌گذاری انجام می‌کنند. پژوهش‌های مختلف نشان داده که ارتفاع، اندازه‌گیری بالا و پایین نشاء کاری، کارایی و اندازه‌گیری بالا و پایین نشاء کاری، و قدرت درخشش نشاء کاری بین تاریخ‌های مختلف نشاء کاری و مکمل‌دهی مجدد ماده خشک و نیتروژن در غلات عموماً مختلف می‌باشد.

(1849/1280)

1. ژه‌ها در نشاء‌های مختلف محصولات بین تاریخ‌های مختلف نشاء کاری بیش از حد تهیه می‌شوند.
2. ژه‌ها در نشاء‌های مختلف محصولات بین تاریخ‌های مختلف نشاء کاری به‌طور متوسط در نشاء‌های مختلف مکمل‌دهی مجدد ماده خشک و نیتروژن در غلات عموماً مختلف می‌باشد.

(1385/1384)

(1386/1385)
نظر اهمیت نسبی معنی و مخزن در نظر گرفته می‌شود و سیستم انتقال مواد فتوسترنی از منبع به مخزن کمتر در نظر گرفته می‌شود. این در حالی است که نظرات خلاصه تولید محیط به وضعیت انتقال مواد فتوسترنی بستگی دارد (اسلامی، 1376، 1؛ اسکوکی، 1375). ممکن است در مواردی منبع و مخزن محدود کننده عملکرد نیاشند، بلکه فرضی سیستم انتقال در مسیر منبع و مخزن محدود کننده باشد. وجود مقدار زیاد نامناسب و قند در غلاف برگ‌ها و ساقه در هنگام برداشت، نشان دهنده محدودیت در سیستم انتقال با سیستم ذخیره است (اسلامی، 1376، 1؛ ایوانی، 1379).

رشد برگ‌ها و ظهور مقدار آسیپلاستها و تغییر آن به ادامه گیاهی در طول دوره رشد تحت تأثیر قرار می‌گیرد (Yoneyama et al., 1384). عفونت (Ghaffari، 1376) نشان داد که با تنگی نشانه‌ها را که تغییر می‌کند و حتی گیاه‌ها با تنگی حقوقی مثل خشکی و بعضی گیاه‌ها با تنگی حقوقی مثل خشکی در دوره‌های مختلف رشد خود مواجه می‌شوند این موارد مهمی بر عهده دارند.

به عنوان یک روند توزیع آسیپلاستها بر اجزای عملکرد و عملکرد دانه مؤثر است، نیوزولوژیستها و کارشناسان زراعت به دنبال اگاهی در روند توزیع آسیپلاستها در گیاه و چگونگی تأثیر آن‌ها بر عملکرد دانه و روند توزیع آن‌ها باشند (Moon et al., 1394).

آگاهی از این که یک تک تیزی در منابع چندین بخش به عملکرد دانه کمک می‌نماید و تندیس محیطی از یک چندین است راهکاری مفید در انتخاب ایام اصلاح گیاه به نظر می‌رسد. با سایه‌های خاصی، زمان افزایش میزان فتوسترنی، این سیستم به یک دریفت فتوسترنی مختلف در عملکرد نهایی
کمی از نیتروژن موجود در برق‌ها با ریشه منقل می‌شود. از طرف دیگر، نشان می‌دهد که اندام نیتروژن دانه به بکر انتدازه نیتروژن در مکانیسم‌های مختلف با مقدار مختلف نیتروژن برق مرتبط است. همچنین، نشان می‌دهد که برق‌ها در دمای باریک نیتروژن مورد استفاده قرار می‌گیرد. بنابراین، در مطالعات جدید، مناطقی که به‌طور باریک یا محدود دارای نیتروژن برق می‌باشند، می‌توانند به‌عنوان مناطقی که برق‌ها در دمای باریک نیتروژن مورد استفاده قرار می‌گیرند، شناسایی شوند. این مقاله به دانش‌های اهمیت برق‌ها در انتقال نیتروژن در ناحیه‌هایی مانند دمای باریک و محدود نیتروژن، تأکید می‌کند.

میزان مصرف نیتروژن در این تحقیق با توجه به مقادیر نیتروژنیک بین ارقام قدمی و جدید، اثر نیتروژنیک در پیش‌بینی تحقیقات تاریخ گذشته کارایی برقلنده ماده خشک و نیتروژن، همچنین تاکید سه اندام‌های مختلف در تأثیر ماده خشک و نیتروژن دانه، ارقام مختلف مورد بررسی قرار گرفته است.

مواد و روش‌ها

آزمایش در سال 1377 در محل مورد نظر تحقیقات برنج کشور - معاونت درمان انجمن آبی (آب) با 36 درجه و 28 دقیقه شمایی، 27 درجه و 32 دقیقه شرقی، و 9/18 متر ارتفاع از سطح دریا اجراء گردید. (ประی: 1350). طرح آماری مورد استفاده فاکتوریل در قالب طرح بالکه های کامل تصادفی در سه بکار بود. تاریک‌ها شامل دو فاکتور تاریخ (شروع و پایان درجه) و تاریک (کبراول 24 روز بعد)، تاریک (شروع کار در 2 روز بعد) و تاریک (کبراول 10 دمای باریک) بود. تاریک‌ها آزمایش‌های مورد مطالعه کارایی محاسبه گردید. (لیمیت‌های بهبود) در میزان مصرف

میزان تحقیقات (گل‌زنی) برکش و بوته بوده به طور تصادفی از خطوط میباین‌های کرت (36 متر مربع) کرک برگ در سه از بزرگترین ون ترک نمونه، تعداد 15 ساقه را به طور تصادفی انتخاب و ساخته‌های برق در باریک نیتروژن گردید. میزان آنها با به مدت 27 ساعت در آن درجه حرارت 20 درجه سانتی‌گراد گردید. با طرح میزان رسیدگی کامپیوتر کاری نیاز انجام شد. به منظور بررسی در میزان رسیدگی کامپیوتر کاری نیاز انجام شد.
نتایج و بحث

انتقال مجدد ماده خشکه

براساس نتایج حاصله در این مطالعه تاریخ نشان کاری اثر بسیار معنی داری بر انتقال مجدد ماده خشکه ساقه داشت. مقایسات میانگین به روش دانکن نشان داد که تاریخ نشان کاری دوم برتر از سایر تاریخ‌های کاریها برداشت (جدول 2). هم چنین ارقام مختلف از نظر انتقال مجدد ماده خشکه ساقه اختلاف بسیار معنی داری داشت. در مقایسه ساقه‌های کاری که در مرحله نیر (جدول 1) به طوری که رقم چهارمین مقدار را دارا بودند (جدول 3) سوآین و هم‌کاران (1987) نیز نتایجی متفاوت به‌نونه در انتقال مواد (Swain et al., 1987) افرادی نزدیک برگ کاری را برای افرادی که در مرحله نیر دارند (Elitte) انتقال مواد تاریخ نشان کاری و رقم بر روی انتقال مجدد ماده خشکه ساقه بسیار معنی دار بود (جدول 2). به یکن دیگر ارقام برنج در تاریخ‌های مختلف تاریخ نشان کاری و مقدار بر روی انتقال مجدد ماده خشکه ساقه بسیار معنی دار بود. در این مطالعه، بقای برنج در یک محدودیت تاریخ نشان کاری و رقم بر روی انتقال مجدد ماده خشکه ساقه بسیار معنی دار بود.
جدول ۲- میانگین مربعات تجزیه واریانس عملکرد دانه و صفات مربوط به آن

<table>
<thead>
<tr>
<th>S. O. V</th>
<th>محصول دانه</th>
<th>دمای آرایه</th>
<th>df</th>
<th>مربعات واحد</th>
<th>سایر گیاه</th>
<th>دمای آرایه</th>
<th>df</th>
<th>نیتروژن (\text{g} \text{ha}^{-1})</th>
<th>سایر گیاه</th>
<th>دمای آرایه</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication (R)</td>
<td>2</td>
<td>0.1</td>
<td>5211.11</td>
<td>0.43</td>
<td>412.45</td>
<td>81126.03</td>
<td>67778.59</td>
<td>562.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplanting date (D)</td>
<td>2</td>
<td>0.7*</td>
<td>94344.44**</td>
<td>1020.80 n.s</td>
<td>1020.80 n.s</td>
<td>98999.21**</td>
<td>29537.99**</td>
<td>21567.20*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety (V)</td>
<td>3</td>
<td>92.11**</td>
<td>26499.07**</td>
<td>5170.37**</td>
<td>5170.37**</td>
<td>6770.37**</td>
<td>16676.69**</td>
<td>34490.96**</td>
<td>126472.45**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D x V</td>
<td>6</td>
<td>0.16 n.s</td>
<td>74974.07**</td>
<td>2359.26**</td>
<td>2359.26**</td>
<td>1500.92**</td>
<td>184455.21**</td>
<td>108448.26**</td>
<td>208816.91*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>22</td>
<td>0.13</td>
<td>31974.75</td>
<td>1950.75</td>
<td>620.45</td>
<td>59428.43</td>
<td>33393.50</td>
<td>14612.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns, * and **: Non-significant, significant at the 5% and 1% of levels of probability, respectively.

جدول ۳- میانگین میزان تغییرات به سه مرحله آنلایم فرآیند رشد گیاهان (کیلوگرم در هکتار)

<table>
<thead>
<tr>
<th>عامل</th>
<th>محصول دانه</th>
<th>دمای آرایه</th>
<th>df</th>
<th>نیتروژن (\text{g} \text{ha}^{-1})</th>
<th>سایر گیاه</th>
<th>دمای آرایه</th>
<th>df</th>
<th>کل اغلبی</th>
<th>دمای آرایه</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transplanting date</td>
<td>2</td>
<td>1200 b</td>
<td>200 a</td>
<td>70 a</td>
<td>1470 b (23.3)*</td>
<td>6310 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 13 1998</td>
<td>1400 a</td>
<td>190 a</td>
<td>50 b</td>
<td>1640 a (22.5)</td>
<td>5970 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 23 1998</td>
<td>1100 c</td>
<td>190 a</td>
<td>60 ab</td>
<td>1060 c (18.2)</td>
<td>5840 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 1 1998</td>
<td>810 c</td>
<td>190 a</td>
<td>60 ab</td>
<td>1050 c (18.2)</td>
<td>5840 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td>3</td>
<td>790 c</td>
<td>220 a</td>
<td>-20 b</td>
<td>990 c (21.2)</td>
<td>4680 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarom</td>
<td>1190 b</td>
<td>230 a</td>
<td>30 c</td>
<td>1450 b (19.4)</td>
<td>7470 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemat</td>
<td>1210 b</td>
<td>210 a</td>
<td>120 b</td>
<td>1540 b (24.7)</td>
<td>6230 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sahel</td>
<td>1330 a</td>
<td>100 b</td>
<td>150 a</td>
<td>1580 a (27.4)</td>
<td>5760 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers in parenthesis show the proportion of dry matter remobilization (%)in grain yield.

Means followed by the same letters in each column are not significantly different at the 5% level of probability.
Table 4. Nitrogen fixation from different parts of the plants during the growing season.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant Parts</th>
<th>Nitrogen Fixation (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1</td>
<td>Stem</td>
<td>8.57</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>Other parts</td>
<td>6.53</td>
</tr>
<tr>
<td>May 1</td>
<td>Stem</td>
<td>8.29</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td>Other parts</td>
<td>7.21</td>
</tr>
<tr>
<td>April 1</td>
<td>Stem</td>
<td>8.01</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>Other parts</td>
<td>7.04</td>
</tr>
<tr>
<td>March 1</td>
<td>Stem</td>
<td>7.74</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>7.21</td>
</tr>
<tr>
<td></td>
<td>Other parts</td>
<td>6.77</td>
</tr>
</tbody>
</table>

Table 5. Average values for grain yield and related traits in different treatments (kg/ha).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grain Yield</th>
<th>Protein (%)</th>
<th>Kernel Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1</td>
<td>10.24</td>
<td>12.5%</td>
<td>30.1</td>
</tr>
<tr>
<td>May 1</td>
<td>10.56</td>
<td>13.1%</td>
<td>30.5</td>
</tr>
<tr>
<td>April 1</td>
<td>10.89</td>
<td>13.7%</td>
<td>31.0</td>
</tr>
<tr>
<td>March 1</td>
<td>10.32</td>
<td>12.9%</td>
<td>29.8</td>
</tr>
</tbody>
</table>

Numbers in parenthesis show the percentage of nitrogen fixation (% in nitrogen).
آن کوچک تر از سایر ارقام است. وجود مخزن نمونه پدیده بهبود ماده خشکک خشکک بیشتر ندارد، ماده خشکک بیشتر
پرچم رونده افزایشی را فیزیکی تمایل دارد. وقت از اینکه برای
تاریخ‌های مختلف نشان‌های کاری بیشتر برای یافتن انتقال مجدد
ماده خشکک بیشتر پرچم بسیار معنی دارد (جدول 2).

انتقال مجدد ماده خشکک بیشتر

تاریخ نشان‌های کاری انتقال مجدد ماده خشکک
برای ها تأثیری از خود نشان نداد (جدول 2). اما ارقام
مختلف از نظر انتقال مجدد ماده خشکک بیشتر با هم
اختلاف بسیار معنی داری از خود نشان ندادند (جدول 2).

به نظر معیار انتقالات ارقام در انتقال مجدد ماده
خشک خشکک بیشتر با میزان بیش از نشان بیشر و نیز صرعته بیش
شد. بررسی داده‌هایی و سنجش از این نشان انتقال مجدد
خشکک بیشتر نیز در آن ها مشاهده گردید. مقایسه
میانگین بیش از دانه‌های داده که در طریق، و رقم فجر
به ترتیب بیشتر و کمترین انتقال مجدد ماده خشک
ساوت برگ ها در برابر بودند (جدول 2). انتقال معنی دانه
خشکک بیشتر در ارقام پرچم به شدت تحت تأثیر تاریخ
نشان کاری قرار گرفت (جدول 2).

انتقال مجدد تیروژن

انتقال مجدد تیروژن سلیقه
تاریخ نشان‌های بسیار معنی داری بر روی انتقال
مجید تیروژن سلیقه داستان است (جدول 2). مقایسه
میانگین بیش از دانه در تاریخ نشان کاری اول پرتری
نیسمی بیش از تاریخ‌های نشان داده که در دیگر دارا
بر (جدول 4). از این نشان بیشتر انتقال مجدد تیروژن
به هم انتقال سیستم معنی داری داشتند. رقم فجر و رقم
فجر به ترتیب بیشتر و کمترین انتقال مجدد تیروژن
را دارای بودند (جدول 4). اما در نهایت، زنده سوزا و
همکاران (1966) در آزمایشی نشان دادند که برگ پرچم در رقیم اصلاح شده 7471
در مرحله‌ی رنگ‌بندی به ذخیرهٔ مخزن برای تیروژن بانوی روبه ویلی در رقم قبیلی
پنیو، پنیо
آزمایش وادا و همکاران (Wada et al., 1993) نشان دادند که اختلاف در بیوت برگ با اختلاف مقدار انتقال نیترژن از پهنک برگ به دانه مرتبط بود. همچنین، وادا و همکاران (1991) نشان دادند که کاهش مساحت برگ و مقدار نیترژن کربن در این گروه به خوش شکافته مقدار یافته در گروه ضایعات همگستگی معنی دارد. پس از این پیرد ارزیابی برخی در تغییرات مختلف نشان داد که انتقال مجدد نیترژن بسیار معنی دارد (جدول 2).

نتایج گیری
جدول 1، 4 هم انتقال مجدد را در تامین ماده خشک و نیترژن دانه نشان می دهد. بر اساس نتایج حاصله به معنی می رسد انتقال مجدد مهمی در تامین ماده خشک و نیترژن دانه دارد. همچنین در بین اندام های نیترژن دانه ها انتقال مجدد مهم تری در تامین ماده خشک دانه به دست آمده است (جدول 3). مارشتر (1993) نشان داد که بخشی از ماده فتوسنتزی دخمه دانه که در پر کردن دانه برخی مصرف می شود از صرف 0.4 درصد متغیر می باشد.

<table>
<thead>
<tr>
<th>n</th>
<th>ضرایب همبستگی بین سفتی مورد مطالعه (31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Grain yield</td>
</tr>
<tr>
<td>Nitrogen remobilization</td>
<td>0.44 *</td>
</tr>
<tr>
<td>Dry matter remobilization</td>
<td>0.12 ns</td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی دار، معنی دار در دو صفر احتمال 5% و 1%.

ns، * و **: Non-significant، significant at the 5% and 1% levels of probability، respectively.
References

Yoshida, S. 1983. Rice symposium on potential productivity of field crops under different environments. International Rice Research Institute, 103-129.