بررسی جنگ رقابتی گندم و علف هرز خانواده شب بی: ۲- رقابت برای نور

Study of competition of wheat and crusiferous weeds: ۲- Light competition

حسین نجفی، حمید رحیمیان مشهدی، قربان نورمحمدی، محمد علی باگشاتی

جهانه

به منظور بررسی اثرات و رقابت شب‌هایی و رقابت شب‌هایی بین بخشی علف‌های هر خانواده شب‌بی و گندم (Triticum aestivum دو آزمایش (Rapistrum rugosum و Sinapis arvensis و علف هرز خاکی (Descarainia sophia با تراکم‌های سفر ۱۶، ۲۴ و ۳۲ بوده در مترا مربع و علف هرز خاکی (Descarainia sophia با تراکم‌های سفر ۱۶، ۲۴ و ۳۲ بوده در مترا مربع در نظر گرفته شد. آزمایش دوم (آزمایش گندلی) در سال ۱۳۸۱ در دشتگاه گلی کافادا و در قابل طرح کنار تصادفی به تراکم انجام شد. در آزمایش گندلی و رقابت‌های گندم و علف هرز خاکی و در گلی کافادا در کنار تصادفی به گروه برای رقابت گردید. تأثیر آزمایش نشان داد که در بین علف‌های هر خریدار و دشت و بخشی نمی‌تواند تأثیرات با تراکم‌های بیشتری بر نفوذ نور به داخل کادری داشته و در حضور بین دو گروه مقدار بیشتری از نور در سطوح بالایی کانالی مخلوط مستقیم می‌شود. هنگامی که گندم به عنوان گیاه هدف در حوزه خریدار و دشت و بخشی که نمی‌می‌تواند قرار بر قسم دارد (R/FR) نیز کاهش می‌یابد (P<0.05 داشته. سایه‌های بیشتر خریدار و دشت بر روی گندم ضمن آن که موجب کاهش سطح برگ در گندم شد، عبور نورهای با کیفیت بالا را نیز تحت تأثیر قرار داد.

واژه‌های کلیدی: علف هرز، خانواده شب‌بی، گندم و رقابت برای نور

مقدمه

رقابت‌های گندم و علف هرز از جمله مهم ترین محدودیت‌های تولید محصول انگور و گیاه زراعی در حال حاضر است. این امر که در آسمانه شب‌های گوناگون و در بخش‌های شهری و روستایی با علت‌های متفاوت از جمله مهم ترین مسئله‌ای است که با استفاده از شب‌های شب‌بی و دشت و بخشی در عملکرد گیاهان و محصولات کسانی در خطر می‌باشد. در این راستا و به منظور کاهش مصرف علف‌های محصولات و

مراجع

[1] استادانی‌پور، پژوهش و روزنامه‌های کشاورزی، تهران ۱ و ۲ هفته ترتیب استاد و دانشگاه فردوسی مشهد ۲- استاد واحد علم و تحقیقات تهران
در کانوئیستی هایی اکولوژیکی مدیریت علیف‌های هرز ضروری به نظر می‌رسد. ممکن است تغییرات این پایلله‌های موجود
شما نکاتی از فرآیندهای اصلی رقابت‌گذاری بین گیاه‌ها در محیط زیست
و محیط‌های‌های آب و هوای است. (Rajcan and Swanton, 2001; Lemerle et al., 2001)
در کانوئیستی‌های ممزگ‌کردن در شب و در شب که گیاه
متخلخل می‌کند و در معرض تغییرات جوی مه‌های ادامه‌ی آن گیاه
مشکل تغییراتی ای ندارد، نور هم‌سیری عاملی است که
گیاه‌ها به هم‌سیری خود بر سر گذشته آن رقابت
در عوامل این درجه‌ها توسط عوامل و محیط است. (Traore et al., 2002; Aerts, 1999)
برای نمونه یک فرآیند برای این‌طوره
و یک گیاهی به (Traore et al., 2002; Lindquist, 2001)
در مصرف وجود در کانوئیستی محصول و راهنمای مصرف
انژیز داده داده تا که می‌توان نور
در یک فرآیند توسط گیاه زراعی تحت تأثیر علیف‌های هرزی
وقتی گیاه‌ها در جوار آن رشد می‌کنند
(Rajcan & Swanton, 2001; Crosner & Witt, 2000)
بررسی‌های زراعتی تعدادی از نهال‌های چرخان مورد
مطالعه‌ی فتوسنتزی Photosynthetic photon flux (PPF)
در مصرف و تعدادی از گیاه‌های زراعی تعبیر
(Rajcan and Swanton, 2001; Rolfig & Stutzel, 1999)
فتوسنتزی کلی کانوئیستی‌هایی با استفاده که گیاه در معرض
مصرف می‌باشد. هنگامی که علیف‌های هرز و گیاه زراعی در جوار یکدیگر قرار می‌گیرند، در
اثر به تدریج گیاه‌ها به جوان فتوسنتزی قابل
Photosynthetic photon flux density (PPFD)
دسترس کاهش می‌یابند. (Crosner & Witt, 2000)
باید از این امر توجه
به گیاه در محیط و محیط‌های موجود (Rajcan and Swanton, 2001; Lemerle et al., 2001)
در کانوئیستی‌های ممزگ‌کردن در شب و در شب که گیاه
متخلخل می‌کند و در معرض تغییرات جوی مه‌های ادامه‌ی آن گیاه
مشکل تغییراتی ای ندارد، نور هم‌سیری عاملی است که
گیاه‌ها به هم‌سیری خود بر سر گذشته آن رقابت
در عوامل این درجه‌ها توسط عوامل و محیط است. (Traore et al., 2002; Aerts, 1999)
برای نمونه یک فرآیند برای این‌طوره
و یک گیاهی به (Traore et al., 2002; Lindquist, 2001)
در مصرف وجود در کانوئیستی محصول و راهنمای مصرف
انژیز داده داده تا که می‌توان نور
در یک فرآیند توسط گیاه زراعی تحت تأثیر علیف‌های هرزی
وقتی گیاه‌ها در جوار آن رشد می‌کنند
(Rajcan & Swanton, 2001; Rolfig & Stutzel, 1999)
فتوسنتزی کلی کانوئیستی‌هایی با استفاده که گیاه در معرض
مصرف می‌باشد. هنگامی که علیف‌های هرز و گیاه زراعی در جوار یکدیگر قرار می‌گیرند، در
اثر به تدریج گیاه‌ها به جوان فتوسنتزی قابل
Photosynthetic photon flux density (PPFD)
دسترس کاهش می‌یابند. (Crosner & Witt, 2000)
باید از این امر توجه
به گیاه در محیط و محیط‌های موجود (Rajcan and Swanton, 2001; Lemerle et al., 2001)
در کانوئیستی‌های ممزگ‌کردن در شب و در شب که گیاه
متخلخل می‌کند و در معرض تغییرات جوی مه‌های ادامه‌ی آن گیاه
مشکل تغییراتی ای ندارد، نور هم‌سیری عاملی است که
گیاه‌ها به هم‌سیری خود بر سر گذشته آن رقابت
در عوامل این درجه‌ها توسط عوامل و محیط است. (Traore et al., 2002; Aerts, 1999)
برای نمونه یک فرآیند برای این‌طوره
و یک گیاهی به (Traore et al., 2002; Lindquist, 2001)
در مصرف وجود در کانوئیستی محصول و راهنمای مصرف
انژیز داده داده تا که می‌توان نور
در یک فرآیند توسط گیاه زراعی تحت تأثیر علیف‌های هرزی
وقتی گیاه‌ها در جوار آن رشد می‌کنند
(Rajcan & Swanton, 2001; Rolfig & Stutzel, 1999)
فتوسنتزی کلی کانوئیستی‌هایی با استفاده که گیاه در معرض
مصرف می‌باشد. هنگامی که علیف‌های هرز و گیاه زراعی در جوار یکدیگر قرار می‌گیرند، در
اثر به تدریج گیاه‌ها به جوان فتوسنتزی قابل
Photosynthetic photon flux density (PPFD)
دسترس کاهش می‌یابند. (Crosner & Witt, 2000)
باید از این امر توجه
به گیاه در محیط و محیط‌های موجود (Rajcan and Swanton, 2001; Lemerle et al., 2001)
توانایی های گیاه و مهم ترین علیه های هرز خانواده‌ای بر اساس رتبه برای نور است.

مود و روش‌ها

به ویژه بررسی رفتار نوری بین گیاه و علیه های هرز از آزمایشی (صحرایی و در محیط گیرنتیک) انجام شد. آزمایش‌های صحرایی در سال‌های ۱۹۲۰ تا ۱۹۲۸ و در مزرعه تحقیقات دانشگاه کناروهزی (آغآس) در این سلسله در دهه‌های بیشتر و بسیاری از آن‌ها نمایش گرفت. در این مزارع، گیاه‌های تجاری به‌طور مستقیم در نقشه شمال غربی و انتخاب شدند. این روش نمونه‌گیری بر روی این مزارع در آیا بوده و در آن‌ها با توجه به داشتن گیاه‌های موجود، ثبت شده است. در این بحث، بیشتر گیاه‌های موجود، در جهت اجرای نیازهای استفاده گیاهی از آزمایشی رتبه‌بندی می‌شوند. (Rajcan & Swanton, 2001)

روابط مصرف برخی گیاه‌های کرومی به جمله مهم ترین روش‌های استفاده‌کننده کرومی از این نویسندگان به حساب می‌آید. کمبود اطلاعات جدید در ارتباط با واکنش‌های کرومی به کیفیت نور می‌تواند در جهت اصلاح سیاست‌های مورد استفاده قرار گیرد. (Holt, 1995)

کیفیت نور را تحت تأثیر قرار می‌دهد. در تراکم های پایین افزایش نسبت قرمز دور به نور قرمز می‌تواند مربوط به اندازه بیشتری نور باشد. در حالی که در تراکم‌های بالا کاهش نور قرمز می‌تواند (Aphalo et al., 1994) STEM طیف‌های بالایی است. (Aphalo et al., 1999)

گونه‌های گیاهی مختلف اثرات مختلفی بر کیفیت نور دارند. در بررسی‌های سایتی و همکاران (Sattin et al., 1994) مشخص شد که نسبت نور قرمز به قرمز دور در زیباتریکی در نوار لایه‌ای می‌باشد. در این بحث، سایه‌نگاری در گیاه‌های کرومی به گونه‌ای که در این بحث مورد بررسی قرار گرفت، حداقل گرایشی حیرت‌گذاری خود را جهت این نتایج باعث شده و در مطالعات گروهی مخلوط میزان تغییر موجود در بالا و پایین و هم چنین لایه‌های مورد
مختلف کانویی به هم زمان با بسته کانویی علیه های هرز (۱۹۸۰ و پس از کاست) و با استفاده از شمعنع شمایه اندام گز شد. به منظور ثابت نوت موجود در لایه مختلف کانویی، از پایه فریز که روی آن و در فواصل مساحت (۱۰۰ میکرو مولول بر متر مربع در تاریخ را تا ۵۰% تا ۷۵% زمان) محلی شیوعی برای استقرار شمعنع شمایه اندام گز شد. آزمایش در قالب طرح کاملاً تصادفی با سه تکرار انجام و در زمان گذشته علیه هرز میزان تشعشع ورودی به داخل کانویی و نسبت نور قرمز به قرمز دور در زیر کانویی گیاه هدف با استفاده از دستگاه اندازه گیری شمعنع (۱۸۳۸ - لی) (۱۸۳۸ - لی) (سنسور Sensor) در دو رنگ سبز و سبزگار که بر روی سه پایه نصب شده بر دو هواپیما کانویی گیاه هدف قرار داده شده و در حالی که جهت جلوگیری از خروج نور درب های اندازه گیری شده می شد نمی‌تواند در محلی شیوعی برای خانم گیاه گرخت. در هر گلدان چهار گیاه کشت گردید. پیک گیاه به عنوان گونه هدف در مرکز گلدان و سه گیاه به عنوان هم‌نماه به فاصله ۱۰ سانتی‌متر از گیاه هدف قرار گرفت. به منظور بررسی رفتاری هرم یک از علیه هرز بر گلدان و همچنین تأثیر گندم بر روند رشد علیه هرز گیاه گندم به عنوان گیاه هدف در مرکز گلدان کشت و علیه هرز خردل و خشک و خاکستر (هر یک در گلدان های جداگانه) به عنوان گیاه مجاور در نظر گرفتند. در هر یک از گلدان‌های با گیاه هدف در مرکز گلدان کشت و گندم به عنوان گونه مجاور در اطراف آن ها قرار گرفت. در گلدان‌های جداگانه گیاه نیز کشت خاکسپری در مرکز گلدان و در اطراف آن (کشت شد نا انتهای دیو که هم ورز مورد ارزیابی قرار گرفت. به دستآورد مبره به مرحله یک گیاه هدفی گندم و به منظور بهاره سازی گندم و گونه های علیه هرز در دو می‌تواند به دست چهار فله در حد پنج درجه سانتی‌گراد حفظ شده. پس از این سیستم کنترل اندازه گیری رشد
نهم تها مقدار کل تری جذب شده توسط کوانوی گنگد کمتر است در مقایسه با تیمور با لن ولعف هر (2) با که مقدار بیشتری از نور در لایه های بالایی مورد استفاده قرار گرفته و مقدار کمتری به گه های پایین می رسید. با توجه به شکل 1 مشاهده می شود که به شکل قابل توجهی از نور (33 درصد) در ۶۰ درصد باقی باقی کوانوی مخلوط سه‌گانه می شود. این این در حالی است که در تیمار شاهد (شکل خالص) و در حضور خاک‌شیر (شکل 2) لایه های پائینی جذب نور بیشتری دارند. این مشاهده با پرورش سطح بزرگ در کوانوی مخلوط و خالص امکان‌پذیر نمی باشد (شکل ۳). این نتیجه (R/FR) مربوط به یکی از جمله مهم ترین فاکتور های مؤثر در تغییر کمیت نور در بادی‌های شیمی‌دان. سرعت توسعه سطح بزرگ شاخه سطح بزرگ گیاه، توزیع سطح بزرگ در کوانوی، ارتفاع گیاه و ضریب استحکام نور (R/FR) از مهم‌ترین صفات ساختاری (Begna, et al., 2001) مربوط با سطح نوری محصول می شود. (R/FR) نشان می دهد که سطح بزرگ گیاه نزدیک به سطح زمین می باشد. در صفات ساختاری محصول شده و توانایی گیاه در جذب نور و قدرت به آن است. بنابراین هر گونه کاهش در شاخص سطح بزرگ گیاه موجب دریافت و جذب گیاه کمتری از این تضعیف شده سی شود (Rijvent & Swanton, 2001)

در بورسی انجام شده در محیط کنترل شده مشخص شد که هنگامی که گنگد به عوامل گیاه هدف در مرکز

جدول 1- کمیت نور (R/FR) موجود در کوانوی گنگد (گریه هدف) در رقابت با علف های هرز

<table>
<thead>
<tr>
<th></th>
<th>کنترل (Control)</th>
<th>نور + شاخه سلول سطح بزرگ (Wheat + wild mustard)</th>
<th>نور + شاخه سلول سطح بزرگ (Wheat + alfalfa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/FR</td>
<td>0.52 a</td>
<td>0.39 a</td>
<td>0.67 a</td>
</tr>
<tr>
<td>wheat</td>
<td>0.14 a</td>
<td>0.13 a</td>
<td>0.14 a</td>
</tr>
<tr>
<td>Me</td>
<td>0.06 b</td>
<td>0.05 b</td>
<td>0.06 b</td>
</tr>
</tbody>
</table>

* The same letters in each category are not significantly different at the 5% level of probability.
Fig. 1. Effect of the highest density of turnip weed on light absorption (%) of mixed canopy (wheat and turnip weed) in compare with control (pure wheat)

Fig. 2. Effect of the highest density of flax weed on light absorption (%) of mixed canopy (wheat and flax weed) in compare to control (pure wheat)

Fig. 3. Red to far red ratio (R/FR) in pure wheat (control) and mixture of wheat and wild mustard (wh + wm) and wheat and flax weed (wh + fw)
باش و هم چنین وقتی که بیشترین استقامت از بزرگ‌های برگ‌های گزارش‌های مختلفی از آنها در نقل و نقل به زبان‌های مختلف خود را قرار دارند. در برگ‌هایی که بیشتر از هر گونه‌ای هم‌زمان با دارایی‌های مطلوب دارند، افقهی را با مناسب‌تری استفاده کنند.

این نتایج این است: سه آنالیز بیشتر حذف و حذف در این شکل 3 و 4، قابلیت منابع، زیرگروه‌های لایه کانوبی (R/FR) و نسبت در در زیر کانوبی به نور بالایی کانوبی (B) گذشته در محدوداوران و حجم (A) و خاک‌شیر (B)

Fig. 4. Relationship between red to far red ratio (R/FR) and ratio of light fluxes within and above the canopy (I/Io) in mix canopies of wheat and wild mustard (A) and flixweed (B).

Fig. 5. Relationship of red to far red ratio and leaf area index of wheat in mix canopies of wheat and weeds.
جدول 2- کیفیت نور (R/FR) و کیفیت نور (V/Lv) موجود در زیر کاتانوی خردل و خاکبر (گیاه هدف) در شرایط رقابت و عدم رقابت با گندم.

<table>
<thead>
<tr>
<th>عامل</th>
<th>فیلوکسی عضوی</th>
<th>فیلوکسی عنصری</th>
<th>کیفیت نور</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg کارب / ج گندم)</td>
<td>(mg کارب / ج گندم)</td>
<td>V/Lv</td>
</tr>
<tr>
<td></td>
<td>(mg کارب / ج گندم)</td>
<td>(mg کارب / ج گندم)</td>
<td>R/FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The same letters in each category are not significantly different at the 5% level of probability.

در مقادیر مختلف موجود تشنوعیت با طول موج نور و قرار دادن در زیر کاتانوی گیاهان گزارش شده است

(Herant- Bron, et al., 1999)

تشنج کلی آزمایش نشان داد که خردل و خاکبر عملکرد سطح بر گیاهی و ساکو اندوزی بالا از قدرت رقابت بهترین نتیجه به گندم و کاتانوی برخوردار بوده و حضور این دو عامل هر در جواز گندم ضمن کاهش مقدار نور جذب مصرف توسط لایه های پایین گیاه کونک نورها یا کیفیت بیابیشان را در اختیار این برگ ها قرار می دهد.

نشریه علم زراعی ایران، جلد نهم، شماره 1. بهار 1387

References

نگیسی، ح.، رحمانی مشهدی، و.، نورمحمدی، م.، باغشی و.، و نصیری محققان (1381). بررسی جثه های رقابیان. 50.

