اکتشافات: مقدار بیشتری از فسفر و زیره بر توزیع عمومی سطح برگ، نفوذ نور در سایه‌ای اندوز و رایحه (Zea mays L.) آنها با عملکرد دانه‌ای دترمینه می‌شود.

Effects of drought stress, amounts of phosphorous and zinc contents on vertical distribution of leaf area, light interception in canopy and their relationships with maize (Zea mays L.) grain yield

سعید ریفیعی، مهدی کریمی، قربان نورمحمدی، حسین آل نادیان

چکیده
نفوذ فسفر و برکت در درختان غربال خاک به دوره‌های زیر است. با ایجاد زیره به دوره‌های زیر این فسفر و برکت به سطح برگ و نور در سایه‌ای اندوز، تعداد و تعداد برگ را بهترین ترکیب سطح برگ در بخش بهای سایه‌ای اندوز منکس نمود. رابطه بین سطح برکت و افتتاح گیاه در زمان ظهور کلمات تا نیمی از پیک مساعد شده به سبب نور (P50) 0.95 دارد. تعداد ناهایی به کمیت نهایی به سبب نور (P50) 0.95 دارد. تعداد ناهایی به کمیت N
به پایین ساقه و ریشه منقل می‌شود.
(Easton, 1969, Palmer et al., 1973)
تشکل آب معمولی تنوع تنش وارده بر گیاهان است و کاهش در ارتباط با کمبود طولانی رطوبت در خاک با تنی زودگری در روزهای گرم می‌شود بالا.
(McKersie and LeShem, 1994)
با هر دو می‌باشد.
(Boyer, 1970)
تشکل در طول دوره ورودی محور به کوپه شدن گره‌ها گردیده و کاهش سطح براکت و میزان جذب نور توسط یک با کاهش می‌دهد.
(Ariy, 1987)
در اثر نگارش چین و مسوگی.
(Chapman and Westgate, 1993)
کاهش سطح پرگ براکت حاضری کاهش تعداد
برگ است تنها انتباذ گره یک
ناست و ریچی (1992)
عمال آب کمبود آب در دوره قبل از گره‌افانتی ذرت مشاهده می‌شود. که در زمان تنها، به تنها سطح گره کاهش می‌یابد، بنابراین سرعت رشد با تأخیر ناشی گرفته و ظهور مبرک به تأخیر می‌اندازد.
گزارش اندازه تنها آب بعد از مرحله پنج، گره کاهش می‌یابد، سطح تعداد کلی که افزایش گیره گیاه کاهش یافته در مرحله فوق پایان یافته است. کوپه شدن ایندازه با کاهش کاهش رشد تنها تنها آب نسبت داده شده است.
فرآیند بودن یک بون در محل تنش پرگ می‌تواند در محل تنش دارد که آب تنش دارد.
(Mengell and Kirkby, 1982)
استفاده بهبود از حد کوه‌های شفاف به تنها باعث کاهش عملکرد درت که یک کاهش می‌شود.
(Rehm et al., 1981)
با حد زیادی.
مشخص گردیده که در نتیجه افزایش سرعت رشد.
(Loomis and Williams, 1969)
فاکتور دیگر در تعیین توزیع سطح براکت مطلوب، توزیع نسبی مواد فوستسی از براکت های مختلف به دانه و است (Eastin, 1969, Dwyer et al., 1992)
(Edmeades et al., 1979)
داشت که مواد فوستسی عمده‌تر از یک براکت به نسبت برون مخزن مخزن حفرات در کنده. براکت های بالا با بایان در اینجا برسی نشان داده را فراهم می‌کنند.
(Boyt and Bradfield, 1962)
در حالی که مواد فوستسی از براکت های بالا با بایان در اینجا برسی نشان داده را فراهم می‌کنند.

(Edmeades et al., 1979)
(Boyt and Bradfield, 1962)
کاکت و نقش کاهش سه‌گانه، مقایسه افزایش و

نظر تیمارهای آبیاری تیمین شد. میزان آب آبیاری با استفاده از درصد و طول خاک در ضریب مزرعه و درصد و طول خاک در ضریب آبیاری به ترتیب شاخص‌های گیاهی، به

کاهش ارتفاع گیاهی می‌گردد. از آن جایی که کشاورزان بدون توجه به موجودی زیان‌های فسفر خاک که از کشت های قبلی بر جای مانده است، و ارتفاع به مصرف

فاکتورهای گرایش فسفر خاکی می‌نمایند، لذا غلظت بالای

فسفر فاکتور تولید جدی را در زمان که وجودی روز

در خاک کاهش پاشیده می‌گردد (مکلوئیت و لطف اللهی، 1387).

در این مقاله تأثیر تنش خشکسالی روی و فسفر بر

الگوی توزیع مسلسل فسفر، نفوذ نور در سایه اندام و

رابطه میان انرژی صفات بر عملکرد دانه ذرت سود

بررسی قرار می‌گیرد.

مواد و روش‌ها

این تحقیق در حال زراعی 1379، در مرکز تحقیقات

کشاورزی لرستان واقع در خرم آباد فاروج و 33

دفته شالی، درجه و ۴۸ دقیقه شهری و 171 متر

ارتفاع از سطح دریا با استفاده از دو عدد ای رقم

کامیاب که S C 70/4 آزمایش در قالب طرح یک‌کره های کامل تصادفی به

صورت انجام گرفت - فاکتوری و یا چهار تکرار

انجام گرفت. فاکتورهای مورد تحلیل شامل تنش

خشکسالی از طریق آبیاری بر اساس سرعت و طول خاک

به ۷۰،۷۰۰،۷۰۱،۷۰۱۱ درصد درصد طول خاک

به ترتیب های اصلی و روی در سه میزان صفر

در کشت های سنتی و سه میزان (Zn)، (ZnO)، (ZnON)

(۱۰، ۲۰) (۲۰، ۴۰) (۳۰، ۶۰) (۴۰، ۸۰) (۵۰، ۱۰۰) (۶۰، ۱۶۰) (۷۰، ۲۰۰)

plex، ZnS، Cu، Zn و Fe سلول‌های روی آبیار (Pb) و سایر فسفر در

۱۰ و ۲۲ کیلوگرم در هکتار در میزان صفر

۱۰ و ۲۲ کیلوگرم در هکتار در میزان (Zn)، (ZnO)، (ZnON)

در صورت فسفری بود که از منبع فسفات آمونیوم به صورت فاکتوریل

کاهش ها در طول فصل رشد به صورت دستی انجام گرفت.

به منظور بررسی توزیع عمودی صلح

برک و جذب نور به وسیله سایه انداز گیاهی

که یک بک در بر گاه‌های جوان گیاهی ظاهر می‌شود،

موجب کاهش نفوذی گیاه‌ها در سالن و در نتیجه

کاهش ارتفاع گیاهی می‌گردد. از آن جایی که کشاورزان

بند نتواند به موجودی زیان‌های فسفر خاک که از

کشت های قبلی بر جای مانده است، و ارتفاع به مصرف

فاکتورهای گرایش فسفر خاکی می‌نمایند، لذا غلظت بالای

فسفر فاکتور تولید جدی را در زمان که موجودی روز

در خاک کاهش پاشیده می‌گردد (مکلوئیت و لطف اللهی، 1387).

در این مقاله تأثیر تنش خشکسالی روی و فسفر بر

الگوی توزیع مسلسل فسفر، نفوذ نور در سایه اندام و

رابطه میان انرژی صفات بر عملکرد دانه ذرت سود

بررسی قرار می‌گیرد.

مواد و روش‌ها

این تحقیق در حال زراعی 1379، در مرکز تحقیقات

کشاورزی لرستان واقع در خرم آباد فاروج و 33

دفته شالی، درجه و ۴۸ دقیقه شهری و 171 متر

ارتفاع از سطح دریا با استفاده از دو عدد ای رقم

کامیاب که S C 70/4 آزمایش در قالب طرح یک‌کره های کامل تصادفی به

صورت انجام گرفت - فاکتوری و یا چهار تکرار

انجام گرفت. فاکتورهای مورد تحلیل شامل تنش

خشکسالی از طریق آبیاری بر اساس سرعت و طول خاک

به ۷۰،۷۰۰،۷۰۱،۷۰۱۱ درصد درصد طول خاک

به ترتیب های اصلی و روی در سه میزان صفر

در کشت های سنتی و سه میزان (Zn)، (ZnO)، (ZnON)

(۱۰، ۲۰) (۲۰، ۴۰) (۳۰، ۶۰) (۴۰، ۸۰) (۵۰، ۱۰۰) (۶۰، ۱۶۰) (۷۰، ۲۰۰)

plex، ZnS، Cu، Zn و Fe سلول‌های روی آبیار (Pb) و سایر فسفر در

۱۰ و ۲۲ کیلوگرم در هکتار در میزان صفر

۱۰ و ۲۲ کیلوگرم در هکتار در میزان (Zn)، (ZnO)، (ZnON)

در صورت فسفری بود که از منبع فسفات آمونیوم به صورت فاکتوریل

کاهش ها در طول فصل رشد به صورت دستی انجام گرفت.

به منظور بررسی توزیع عمودی صلح

برک و جذب نور به وسیله سایه انداز گیاهی

که یک بک در بر گاه‌های جوان گیاهی ظاهر می‌شود،

موجب کاهش نفوذی گیاه‌ها در سالن و در نتیجه

کاهش ارتفاع گیاهی می‌گردد. از آن جایی که کشاورزان

بند نتواند به موجودی زیان‌های فسفر خاک که از

کشت های قبلی بر جای مانده است، و ارتفاع به مصرف

فاکتورهای گرایش فسفر خاکی می‌نمایند، لذا غلظت بالای

فسفر فاکتور تولید جدی را در زمان که موجودی روز

در خاک کاهش پاشیده می‌گردد (مکلوئیت و لطف اللهی، 1387).

در این مقاله تأثیر تنش خشکسالی روی و فسفر بر

الگوی توزیع مسلسل فسفر، نفوذ نور در سایه اندام و

رابطه میان انرژی صفات بر عملکرد دانه ذرت سود

بررسی قرار می‌گیرد.
نتایج و بحث

توزیع عمومی سطح براک در سالهای انداز دوت
اگر درمانی در یک لبه بی‌بند بپذیرد، بنابراین استیا
می‌گردد که با فاصله درمانی از کف ساله انداز گیاهی
تا براک های یادداشت (براک های شماره 80)،
به تدریج منبع براک ها افزوده شده و مسی تا
براک ها نزدیک گل تاجی کاشت می‌باشد. در واقع توزیع
عمومی براک های ذرت به صورت زنجارهایی شکل با
پیشترین تراکم سطح براک در بخش مبانی ساله انداز
بوده و با مدلی درجه 3 با نیروی می‌نماید. رابطه
همگام براک های ذرت به صورت زنجارهایی
شکل بوده و این
رابطه به صورت یک معادله درجه 3 نمایان
می‌شود (مودودار، 2001 و همکاران)
دیگر دانش اطلاعات نیست و رچی (1992)
مطالعه دارد.

شاخ دور سطح براک که مجموع مطالعه براک ها در

مطالعات دارد.

شاخ دور براک‌ها که مجموع مطالعه براک‌ها در
واحد سطح زمین می‌باشد، و باعث شرایط مساعد
نک برگ‌ها به تیمارهای خشک‌کشی نشان داده و با افزایش تنش کمبود آب تیمارها یافته (نمودار 2الف). اگر کاهش میزان شرایط خشکی محیط به کاهش معنی‌دار در شاخه مسئول برگ گزارده شود، بطوری که LAI در تیمار 3/4 کل از 0/3 در تیمار 3/4 به ترتیب بتواند در 3/8 و 5/10 ردیت شود.
(نمودارهای 1 و 2-الف وجود دارد 1 و 2) زیرا تنش آب در طول دوره رشد و روزی مشاهده شد که کاهش میزان جذب نور توسط گیاه‌ها کاهش می‌یابد.

(Chapman and Westgate, 1993)

نتایج نشان داد که افزایش میزان روز در خاک اثر محسوسی بر تندیس به رگ‌ها (نمودار 1ب) و در تیمکارهای افزایش سطح برگ به صورت علی‌الاین افزایش یافته است. از بسیاری از مطالعات همبستگی قوی میزان سطح برگ و همبستگی دانه و افزایش سطح برگ در گراندرب (38/178) مطالعه جداگانه شاخه سطح برگ در بالا و بالین بلاد (متوسط تیمارها) نشان داد که همبستگی قوی میان این دو فاکتور کنده با همبستگی دانه وجود دارد. برای مثال در افزایش میزان سطح برگ به شکست گیاه نشان داده شده که در وضعیت خشک‌کشی نهایی بالای نسبت به بالا میزان سطح برگ گزارده شود. بنابراین این مطالعات در نظر گرفته می‌شود که برگ‌های بالایی در افزایش کمبود آب بهتر شیبی خواهند گردید. دلیل این امر این است که انرژی که برگ‌های بالا یافت می‌کنند باید به برگ‌های بالا و بالین توزیع گردد.

(Ariy, 1987; Chapman and Westgate, 1993)

برای سناریویی که در قالب توان نتیجه گیری نمود که انرژی از حد فسفر به حاکم (Pf) موجب کاهش می‌شود و سطح تیمار 3/4 میزان شاخص سطح برگ ذرت (جدول 2) گزارده شد که این کاهش از برگ‌های بالایی برای بالا در می‌باشد. بنابراین میزان این نتیجه می‌شود که با توجه به این که میزان فسفر اولیه موجود در خاک محل اثر آزمایش (12 میلی‌گرم در کیلوگرم) در حد کافی‌کننده بود(مکانیو و تخمکه، 1387) انرژی 12 میلی‌گرم در هر کیلوگرم به خاک متوریز برای بازی کیفیت بوده و احتمالاً به دلیل برو زمان تعداد عناصر غذا در گیاه کاهش خواهد گرفت.

(Anghithi et al, 1980)

روی و جلو گیری از انعقاد آن آزمایش باشد. در این مطالعه ابتدا می‌تواند حساسیت بیشتری شاخه سطح برگ بالایی بالا نسبت به شاخه سطح برگizzly بالا پایین باشد. زیرا با وجود این که سلول‌ها با یافته‌های جوان گیاهی نگهداری شدینه به میزان میزان نسبت به سطح برگ گزارده شود، بطوری که LAI در تیمار 3/4 کل از 0/3 در تیمار 3/4 به ترتیب بتواند در 3/8 و 5/10 ردیت شود.
(نمودارهای 1 و 2-الف وجود دارد 1 و 2) زیرا تنش آب در طول دوره رشد و روزی مشاهده شد که کاهش میزان جذب نور توسط گیاه‌ها کاهش می‌یابد.

(Chapman and Westgate, 1993)

نتایج نشان داد که افزایش میزان روز در خاک اثر محسوسی بر تندیس به رگ‌ها (نمودار 1ب) و در تیمکارهای افزایش سطح برگ به صورت علی‌الاین افزایش یافته است. از بسیاری از مطالعات همبستگی قوی میزان سطح برگ و همبستگی دانه و افزایش سطح برگ در گراندرب (38/178) مطالعه جداگانه شاخه سطح برگ در بالا و بالین بلاد (متوسط تیمارها) نشان داد که همبستگی قوی میان این دو فاکتور کنده با همبستگی دانه وجود دارد. برای مثال در افزایش میزان سطح برگ به شکست گیاه نشان داده شده که در وضعیت خشک‌کشی نهایی بالای نسبت به بالا میزان سطح برگ گزارده شود. بنابراین این مطالعات در نظر گرفته می‌شود که برگ‌های بالایی در افزایش کمبود آب بهتر شیبی خواهند گردید. دلیل این امر این است که انرژی که برگ‌های بالا یافت می‌کنند باید به برگ‌های بالا و بالین توزیع گردد.

(Ariy, 1987; Chapman and Westgate, 1993)

برای سناریویی که در قالب توان نتیجه گیری نمود که انرژی از حد فسفر به حاکم (Pf) موجب کاهش می‌شود و سطح تیمار 3/4 میزان شاخص سطح برگ ذرت (جدول 2) گزارده شد که این کاهش از برگ‌های بالایی برای بالا در می‌باشد. بنابراین میزان این نتیجه می‌شود که با توجه به این که میزان فسفر اولیه موجود در خاک محل اثر آزمایش (12 میلی‌گرم در کیلوگرم) در حد کافی‌کننده بود(مکانیو و تخمکه، 1387) انرژی 12 میلی‌گرم در هر کیلوگرم به خاک متوریز برای بازی کیفیت بوده و احتمالاً به دلیل برو زمان تعداد عناصر غذا در گیاه کاهش خواهد گرفت.

(Anghithi et al, 1980)

روی و جلو گیری از انعقاد آن آزمایش باشد. در این مطالعه ابتدا می‌تواند حساسیت بیشتری شاخه سطح برگ بالایی بالا نسبت به شاخه سطح برگizzly بالا پایین باشد. زیرا با وجود این که سلول‌ها با یافته‌های جوان گیاهی نگهداری شدینه به میزان میزان نسبت به سطح برگ گزارده شود، بطوری که LAI در تیمار 3/4 کل از 0/3 در تیمار 3/4 به ترتیب بتواند در 3/8 و 5/10 ردیت شود.
(نمودارهای 1 و 2-الف وجود دارد 1 و 2) زیرا تنش آب در طول دوره رشد و روزی مشاهده شد که کاهش میزان جذب نور توسط گیاه‌ها کاهش می‌یابد.

(Chapman and Westgate, 1993)
Table 1. Analysis of variance for No. of Leaves, %PAR at the bottom of the canopy and LAI in different layers of corn canopy

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>df</th>
<th>No. of leaves</th>
<th>% Treated</th>
<th>% PAR</th>
<th>LAI Below ear</th>
<th>LAI Above ear</th>
<th>S.M.E</th>
<th>Mean Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>3</td>
<td>8.1</td>
<td>0.9</td>
<td>0.3**</td>
<td>0.2*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>23.01**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>8.9</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>2</td>
<td>21.4</td>
<td>0.02</td>
<td>0.03</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>125.6*</td>
<td>0.41**</td>
<td>0.72**</td>
<td>0.33*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnZn</td>
<td>4</td>
<td>3.2</td>
<td>0.002</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnP</td>
<td>2</td>
<td>7.1</td>
<td>0.003</td>
<td>0.02</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnZnP</td>
<td>4</td>
<td>0.11</td>
<td>0.006</td>
<td>0.003</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnZnP</td>
<td>4</td>
<td>0.12</td>
<td>0.004</td>
<td>0.006</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>2.71</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and **: Significant at the 5% and 1% levels of probability, respectively.

* and **: Significant at the 5% and 1% levels of probability, respectively.

شديد برك هاي بالاني سياه انداز بر يبراك هاي يالاني موجه افرش ارتق از تجهیر جراhuge از سطح زمين و در تجهیر كاهش عملکرد دانه مي گرده و همكاران (1988) روشن كن با افرش برگ درد در کاف سياه انداز دهار با افزوده 4 ب پ مشوه که از نمودار نموده مي دهد كه با چاپ حاکم 92% نور، يعني رسیده تقريباً 87% نور به سطح زمين، ييشرين عملکرد دانه توليد شده است. شنايان ذكر
Table 2: Mean comparison of No. of leaves, SPAD at the bottom of the canopy and LAI in different layers of drought stress, zinc and phosphorus stress of P, Zn, and Z大雨. The plants were irrigated under the soil water content (SWC) and 90% (moderate stress), 60% (medium stress), and 30% (high stress) of field capacity, respectively. P0 and P50, Zn0 and Zn20, respectively.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Zone</th>
<th>Phosphorus stress</th>
<th>No. of leaves</th>
<th>SPAD 15 cm from the bottom of the canopy</th>
<th>Total LAI above</th>
<th>LAI below</th>
<th>LAI total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zac</td>
<td>WA</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
<tr>
<td></td>
<td>Zac</td>
<td>ZM</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
<tr>
<td></td>
<td>Zac</td>
<td>ZH</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
<tr>
<td></td>
<td>Zac</td>
<td>WA</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
<tr>
<td></td>
<td>Zac</td>
<td>ZM</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
<tr>
<td></td>
<td>Zac</td>
<td>ZH</td>
<td>150</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
<td>164.1</td>
</tr>
</tbody>
</table>

Notes: Duncan's multiple range test. Differences of means sharing similar letter are not significantly different at the 5% level of probability.
Fig. 1. Mature leaf area of individual leaves numbered from the bottom to the top of the plant at tasseling stage.

Vertical lines are standard error of means at 95% probability.
Fig. 2. Accumulated LAI from top of plant to ground level as a function of plant height at tasseling stage. Vertical lines are standard error of means at 95% probability.
Fig. 3. Linear regressions between grain yield a: LAI above ear, b: LAI below ear

Fig. 4. Linear regressions between grain yield a: Total LAI, b: %PAR at the bottom of the canopy
References

