آرزیابی فاژهای پیش از گلدهی حساس به فتوتوپود و درجه حرارت در دو واریته
(Cuminum cyminum L.) محلی زیره سیز

An appraisal of photoperiod and temperature sensitive pre-flowering phases for two cumin (Cuminum cyminum L.) landraces

سیدمحمدسما نیبو 1 و حمید رحمیان مشهدی 2

چکیده

به منظور آرزیابی چگالی کوکیتی فاژهای مختلف حساسیت به فتوتوپود و درجه حرارت تا پیش از ظهور اولین آغوش‌های جنر در زیره سیز، یک آزمایش اندازه‌گیری از فتوتوپود 8 به 16 ساعت و بالاکس تحت دو درجه حرارت روز به شب 20 و 30 درجه سانتیگراد باد تهیه محیط بهداشتی و آذرش به انجام شد. جهت تجزیه و تحلیل داده‌ها و بر اساس نتایج مختلف از دو مدل ایس و آدامز استفاده شد. نتایج حاصل از هر دومدل نشان داد احتمال این که درجه حرارت زیره سیز ایران به لحاظ واقعی و محیط فتوترمال تغییر وجود داشته باشد. این انتقال نشان داد که درجه حرارت زیره سیز ایران به لحاظ محیط فتوترمال تغییر وجود داشته باشد. این نتایج نشان داد که درجه حرارت زیره سیز ایران به لحاظ واقعی و محیط فتوترمال تغییر وجود داشته باشد.

واژه‌های کلیدی: زیره سیز، فتوتوپود، حساسیت به فتوتوپود، اندازه‌گیری

مقدمه

تحقیق پیرامون گلدهی گیاهان زراعی عمداً به دو
منظور انجام می‌شود. 1- منظور از فناوری‌های فیزیولوژیک
دخیل در گلدهی 2- تجزیه و تحلیل کم‌ایت‌ها و میکروسکوپی
فوترومال بر زمان‌بندی فاژهای مختلف گلدهی. بر سیاری
از گیاهان به لحاظ حساسیت به محیط فتوترمال

(ROBERTS et al., 1986)

نسبت به فتوتوپود حساسیت می‌شود و به هنگام این
حسیسیت رفع می‌شود و این که تحت تأثیر محیط
به ویژه درجه حرارت و تشنه می‌بیند این زمان‌بندی
چگونه تغییر می‌کند حائز اهمیت گرفته است در حاصل که از

تاریخ دریافت: 198/8/13

2- استاد دانشگاه تهران

1- پژوهشگر سازمان پژوهش‌های علمی و صنعتی - مرکز اصفهان
یک سو واکنش به محیط توقفت مانند سازگاری و عملاکرد گیاهان زراعی می‌باشد و می‌تواند به عنوان یک شایت مهم در پرورش‌های اصلاحی مدل نظر قرار گیرد و از سوی دیگر چنین فهمی که صحت یافته چیست خروجی یا مدل‌های فیزیولوژی و به نفع آن مدل‌های نو و رشد عملاکرد منجر می‌گردد. ارزیابی فازهای مختلف حساسیت به فتوپیوند با انجام آزمایش‌های انتقال متقابل از طول روزهای مختلف به معرفی دقیق و بالعکس در فاصله زمان‌های ثابت و متغیر قالب انجام است. فرایند گلدهی را می‌توان به یک سری فازهای متوالی تقسیم نهایی نمود. گیاهچه‌ها هم اندازه و واسطه عدم حساسیت به فتوپیوند قادر به گل‌دهی نمی‌باشند. ایجاد فاز نرم مقداماتی به فاز جوانی یا فاز پیش از القاء (Thomas and Vince-Prue, 1997) غیررسان به فتوپیوند (Roberts et al., 1986) بیان شده است. برای این که یک گیاه نسبت به محورکه‌های القایی کننده گل‌دهی را اکتشف نشان دهد لازم است که ادامه‌ای فیزیولوژیک باعث نیاز برای کمک به ماهرکه‌های فیزیولوژیکی گردیده می‌باشد و می‌تواند می‌تواند به این صورت گزارش گردد. استعداد پایه‌گذاری گیاهی به این یکم‌ها و داشتن باشد. میانه فیزیولوژیک فاز جوانی در گیاهان مختلف متغیر می‌باشد. به عنوان مثال در تونویس فیزیولوژیکی لیف (Nicotiana tabacum) سپس ریشه ای عامل عمده تعیین کننده شروع فاز حساسیت به فتوپیوند در شرایط القایی شناخته شده است. (McDaniel, 1980) در مورد برخی گیاهان دیگر سن می‌باشد. به عنوان مثال اصلی حاکم بر اتمام فاز جوانی معرفی شده است (Evans et al., 1982). در بسیاری از گونه‌های عضلان پیش‌بینی جوانی پیش از هر چیز دیگر به عدم کفایت ادامه‌ای یا به دلیل هم‌بود که گل‌دهی نمی‌باشد لازم است. در فاز گیاهی در فاز حساسیت به فاز جوانی در اکثر گونه‌های موزادست (Lang, 1965) در نظر می‌گردد که به محض این که

امکان پاسخ گذاری به محورکه‌های خارجی در گیاه
مرحله و برای کل گل ها صورت می یابد. (Asumadu et al., 1998) ممکن است حیت این اقلام گل نگل و فوریتپون نیز هم نسبت به آن حساس باشد. به عنوان مثال در
پایه ابتدا گرچه زمان اولیه ظهور گل تحت تأثیر طول روز قرار نمی گیرد (Bagnal and King, 1991a
تعداد گل ایزائی (Bagnal and King, 1991b)
می یابد شناسی داده شده است که نه تناقل گلدنه یا نکته نقیز گلدنه ی گل گلدنه اولیه ی گلدنه ایزائی
و تهیه مواد فتوستری به اندام های در حالت شخص
و تحت تأثیر طول روز قرار دارد (Morandi et al., 1988).
پژوهشگران مختلف حس آزمایش های انگاج شده
چنین نظر کردند که زیره سنگ گیاهی روز بلند
است و نسبت به طول روز حساس می باشد (نادری,
1373; کاماری, 1369; ملافلیتی, 1381).

تزجیه و تحلیل داده های آزمایش های انقلاب متقابل
طول فازهای مختلف نم می توان با استفاده از
آزمایش های انقلاب متساوي مشخص نمود. در این نوع
آزمایش ها گیاهان در فاصله زمانی معتمد یا غیر متمایز از
محیط با شرایط قابلی به محیط با شرایط غیرقابلی و
بابیکس متصل می شوند و زمان تا گلدنه به عنوان متغیر
پاسخ دره انقلاب ثبت می شود (Wang et al., 1997a)
معمولا به محض جوانه زدن و سنگ کردن انقلاب نهایی
متقابل شروع می شوند و تا هنگام اولین گل زایی و با
ظهور اولین گل ادامه می یابد. در مورد یک گیاه روز
بلند اگر عامل طول روزهای کوتاه محدود به فاصله
گیاه و یا فاصله سبزسایه به فیتوپون بادن هیچ تأخیری
در زمان گلدنه به وجود نمی آید. بالعکس اگر
روزهای کوتاه مقرن فاصله سبزسایه به فیتوپون بادن مصرف
شده باشد تعداد روزهای نا گلدنه شیدا افزایش
می یابد (شکل 1). به همین روال روزهای بلند در مورد
یک گیاه روز بلند تنها اگر مقدار مراحل حساس به
فیتوپون اعمال شده باشد موجب تسریع گلدنه
می شود.

55
در شروع گلدهی و فرسنگ پیشتر می‌خواهد
انتهایی برای تولید برگ‌های باکر
(Adams et al., 1998; Cockshull, 1985; Ehsan, 1985)
استفاده از تعداد برگ‌های گونه با پایه باین شده است.
در مورد گل‌زیب‌های سبز با الگوی گل‌دهی نامحدود
و غیرمکانی است.

طول فازهای مختلف نمو به لحاظ حساسیت به
فتوپرید، برای درجه مشابه شکل 1 به ترتیب ترکیب
(Boyle and Stimple, 1983; Stead, 1984)
قابل برآوردن می‌باشد. Patterson, 1995; Roberts et al., 1986
تجزیه و تحلیل رگرسیونی جهت برآوردن مراحل مختلف
حساسیت به فتوپرید مورد استفاده قرار گرفته
(Wang et al., 1997 a & b; Wiltkerson et al., 1989)
است (Wang et al., 1997)
روش دیگر تجزیه و تحلیل دو دست دارد ها روش الیس
و همکاران (Ellis et al., 1992)
در مدل الیس و
همکاران که مفهوم پارامتری آن به صورت بصری در
شکل 1 نشان داده شده است، پارامترها که در دو طول
مراحل مختلف حساسیت به فتوپرید می‌باشد از جمله
و تحلیل هم زمان داده های دو دست تیمارهای انتقال از
شارایت القایی به غیر القایی و بالعکس به دست می آید.
در این مدل دیدگی پژوهشگران نیز در مورد گیاهان زراعی
(Bertero et al., 1999; Collinson et al., 1992 & 1993; Ellis et al., 1997)
مختلط استفاده کرده است.

در انتقال از روز کوتاه به روز بلند

\[\text{DTF} = \begin{cases}
\text{a1 + II + a3 if } \text{DOT} \leq \text{a1} \\
\text{DOT + II} - (\text{DOT} - \text{a1}) II/IS + a3 \text{ if } \text{a1} < \text{DOT} < \text{a1} + IS \\
\text{a1 + IS + a3 if } \text{DOT} \geq \text{a1} + IS
\end{cases} \]

در انتقال از روز بلند به روز کوتاه

(\text{Lens culinaris L.})

ارجمنده شده مطلول حساسیت شناسایی شده است.
مرحله پیش از این قله غیر حساس به فتوپرید
(فاز جوانی)، مرحله القای حساس به فتوپرید و مرحله پس از القاء
محدود به فتوپرید (Roberts et al., 1986).
و گوارا و
(Verghera and Chang, 1985)
روی بینی از فاز اولیه غیر حساس به فتوپرید تحت
نام (Base vegetative phase)
عنوان فاز روشی پایه (Patterson, 1995; Roberts et al., 1986)
در آزمایش بر
(Chang et al., 1985)
تشکیل یافته در این فاز به عنوان فاز می‌باشد.
فاز روشی پایه درست
برخی از آن‌ها تعریف شده است. برای اساس نوع عدم
توافق در متاب در رنگ و تغییرات، تعریف‌ها
مربوط به فازهای مختلف نمو نزدیک نقاط نظر چگونگی
حساسیت به فتوپرید نیز زمانی آن وجود دارد.

در گیاهان که به یک گل اذرین انتهایی ختم
می‌شوند و الگوی گل‌دهی موثری دارند تعداد برگ
ییک‌تولید به عنوان شاخص جایگزین تعداد روز‌ها تا
گل‌دهی یا گل زایی شود. در یک چنین حالتی زمانی که
گیاه از شرایط القایی به غیر القایی وارد می‌شود، اولین
زمانی که انتقال پس از آن زمان به کاهش فاصله در
تعداد برگ منجر می‌شود، مقدار زمانی خواهد بود که
مرخصی انتهایی وارد مرحله مران به گل‌دهی می‌شود
(Adams et al., 1998; Bradley et al., 1997)

جوزین را می‌توان با انتقال از شرایط غیر القایی به القایی
تعین کرد. گیاهان انتقال یافته‌ای در فاز جوانی همان تعداد
برگی را خواهند داشت که گیاهان انتقال یافته در ابتدای
فاز جوانی بیشتر شرعی و رده کردن دارند و
در حالتی که گیاهان انتقال یافته پس از اتمام فاز جوانی به
نسبت تأخیر در ورود به شرایط القایی مناسب تعداد
برگ بیشتری خواهند داشت که این نتیجه تأخیر
اللغزاهای فازهای پیش از گلدهی

اشته که در مدل الیس فاز جوانی با جریمه‌های القایی مورد نیاز بوده و به‌طور کامل به مرحله الیس بوده‌گذارده تداخل دارد و برآورده صحتی از آن به دست می‌آید. این اشکال از آن جامای ناشی می‌شود که در مدل الیس فرض بر آن دوره می‌شود که زمان آغاز مصرف منحنی صعودی با زمان آغاز نزل منحنی نزولی یکسان باشد. به منظور رفع این مشکل آماده‌کردن فاز حساس به تغییرات نیاز به کنار آمدن (Takahashi, 1997a) بر این اساس واضح

شکل 1 - طرح بصری پارامترهای مدل الیس و همکاران

Fig. 1. Schematic representation of Ellis et al., model parameters
به Fourier پد به که با ورود به مرحله ازایم به گل‌دهی خاتمه می‌یابد (۳) فاز نمو گل حساس به Fourier پد، فاز نمو گل غیرحساس به Fourier پد (شکل ۲).

کرده‌است (۱۹۹۹) بر این اساس در مدل آدامز چهار فاز مختلف فرض شده است (۱) فاز جوانی غیرحساس به Fourier پد (۲) فاز القاء حساس پد

شکل ۲- ترخیص پارامترهای مدل آدامز و همکاران

Fig. 2. Schematic representation of Adams et al., model parameters

<table>
<thead>
<tr>
<th>پارامترهای مدل آدامز عبارتند از</th>
<th>a₁, Is, a₃</th>
<th>if DOT < a₁ + Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT + Is (DOT - a₁ - Pi) (Is - Pi) / Pd + a₃</td>
<td>if a₁ + Pi < DOT < a₁ + Pi + Pd</td>
<td></td>
</tr>
<tr>
<td>a₁ + Pi + Pd + a₃</td>
<td>if DOT < a₁ + Is</td>
<td></td>
</tr>
</tbody>
</table>

مدفوع کلی این تحقق بررسی مراحل مختلف حساسیت به Fourier پد در کل فاصله نمو زیره سبز می‌باشد. اهداف دیگر نیز عبارتند از بررسی چگونگی اثر درجه حرارت بر مراحل مختلف حساسیت به Fourier پد و نیز شناسایی چگونگی تفاوت های احتمالی بین توده‌های محلی زیره سبز از نقطه نظر واکنش به Fourier پد در مراحل مختلف نمی‌باشد.

مواد و روش ها

یک آزمایش انتقال متقابل از Fourier پد به ۱۶ ساعت و بالعکس در طی پاییز و زمستان سال ۱۳۸۱-۸۲ بر اساس از روز کوتاه به بلند،
و اکتش های قابل توجهی را در رفتار فنولوزیک گیاه مشاهده نمود. در محاسبه طول روز در مقطع مشهد در طول دوره آزمایش که به منظور تنظیم مدت نوردهی Twilight که در شرایط معمول مدت زمان شفق صبحگاهی و شام گاهی نیز منظور شده است، چرا که شدت نور در این اوایل از حدود کافی در دهه زیر خاتمه تا کافی افزایش چه به هنگام طلوع و چه به هنگام چمن در عرضعایی جنگلاپایی مختلف از حداقل 20 فوت کدل که شدت آستانه تأثیر بر فرمانده فنولوزیک می‌باشد، فراگر Ms رود (1978) در آزمایشی زمان آغاز دوره روشنایی در تیمار رنگی‌بوده ایدا صبح انتخاب شد و پس از هشت ساعت نور طبیعی در تیمار رنگی‌بوده 16 ساعت و 8 ساعت نور طبیعی تکمیلی با استفاده از لامپ های بخار سدیم استفاده شد.

در جریان حوزه‌های طول، به شربت در هر یک از دو واحد مثل روز به شب در هر یک از دو کنترل کننده سخت افزار گلخانه‌ها تحقیقاتی 2010 و 2011 در جریان سالن‌گرده بود. بروز تغییرات 24 ساعت در جریان حرارت و احتمال مختلف گلخانه‌های تحقیقاتی نشان داد که بی‌توجه انحرافاتی که به صورت معمول در چگونگی تغییرات 24 ساعت در جریان حرارت به ویژه به لحاظ مقدار کمی و بیانش رویانه مشاهده می‌شود سطح زمین تحت فشار بار هوا در جریان حرارت کمترین مقدار انحراف ممکن را از سطح زمین تحت فشار بار هوا مورد نظر (بنابراین) و در جریان حرارت های روز به شب مقرر 24 ساعت نشان می‌دهد. که نشان می‌دهد که طور مستقیم در گلخانه‌ها به ظرفیت یک کیلوگرم با خاکی مشابه از 30 درصد ماسه بادی و 70 درصد خاک زراعی به بافت لایه انجام شد. نتایج در گلخانه‌ها حساب نتایج کافی (1969) چهار بونه در هر گلخانه معامل 200/12 بونه در هر گلخانه در نظر گرفته شد. در این اساس پس از ظهور دومین برهگ غیر لی ای در انجام آزمایش گلخانه تحقیقاتی نمایه که در سطح علمی به روش فشارهای اندازه‌گیری داشته و در با حضور شرکتکنندگان به منظور استفاده کامل از دوره طبیعی از یک رشته جدید شده و مجددا هنگام آغاز دوره تاریکی جفت شده و یا یک پلاستیک سیاسته نهایی به نحوی پوشانده شده که نسبت به تاریکی مطلق داخل محله‌های اطمینان حاصل شد. از یک پیوسته به منظور اعمال دستی طول روز در آزمایش‌ها گلخانه‌ای دیگری نیز استفاده شده است (Asumadu et al., 1998). انتقال ها تریپ دار 12, 16, 20, 24, 32, 36 و 48 ساعت از زمان سیر کردن انجام می‌شود.

در اکثر آزمایش‌های که تیمارها طول روز می‌باشد تداخل تیمارها طول روز و میزان ترکیز تابشی همگامی روزهای از منابع خطه به شمار می‌روند. در این آزمایش دوره روشنایی مشابه از تاریکی به استفاده صبح انتخاب شد و پس از هشت ساعت نور طبیعی در تیمار رنگی‌بوده 16 ساعت از ساعت نور طبیعی تکمیلی با استفاده از لامپ‌های بخار سدیم استفاده شد.
کاربردی 2000 بهینه سازی های لازم با توجه به پارامترها نوشته و

نتایج و بحث

برازش هر دو مدل الیس و آدامز برای هر چهار

شکل ۳- طرح بصری برای داده‌های محیطی مدل الیس و همکاران به داده‌های حاصل از آزمایش‌های انتقال متقابل برای دو توedad

مجموعه داده حاصل از آزمایش‌های انتقال متقابل به

معنی دار بودند (شکل های ۳ و ۴). در مدل الیس فاز انتقال همکاری می‌باشد و

تخمین های دو مدل الیس و آدامز همکاری هر دو توانه محیطی و هر دو توانه درجه حرارت روز به شکل

Fig. 3. Schematic representation of fitted Ellis et al., model to data of reciprocal transfer experiments for two
cumin land races under two day/night temperature regimes
معنی داری با افزایش درجه حرارت طولانی تر می‌شود.

در طرح ۴-طرح بسیاری برای بازش مدل آدامز و همکاران به داده‌های حاصل از آزمایش‌های انتقال متقابل برای دو توده محلی زیره سیب آذرشهر و مشهد تحت دو درجه حرارت روز به شب

Fig. 4. Schematic representation of fitted Adams et al., model to data of reciprocal transfer experiment for two cumin land races under two day/night temperature regimes.
Table 1. Parameter values from optimization of Ellis et al., model for four data sets and the related coefficients of variation. The values in parenthesis are standard error of each parameter. PS represents photoperiod sensitivity

<table>
<thead>
<tr>
<th>Land race</th>
<th>Temperature (°C)</th>
<th>PS (d/h)</th>
<th>I (day)</th>
<th>L (day)</th>
<th>a3 (day)</th>
<th>a1 (day)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azarshar</td>
<td>20/10</td>
<td>1.42</td>
<td>35.99 (0.49)</td>
<td>24.55 (0.46)</td>
<td>0.62 (-)</td>
<td>3.49 (0.56)</td>
<td>0.96</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>39.59</td>
<td>21.59</td>
<td>1.31</td>
<td>5.31</td>
<td>0.98</td>
</tr>
<tr>
<td>Mashhad</td>
<td>20/10</td>
<td>1</td>
<td>25.20 (0.49)</td>
<td>17.20 (0.43)</td>
<td>5.59 (-)</td>
<td>0.19 (0.63)</td>
<td>0.6</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>22.45</td>
<td>13.56</td>
<td>5.30</td>
<td>3.24</td>
<td>0.77</td>
</tr>
<tr>
<td>LSD</td>
<td>%</td>
<td></td>
<td>2.19</td>
<td>1.82</td>
<td>4.19</td>
<td>2.607</td>
<td>6.013</td>
</tr>
</tbody>
</table>

The dashed lines indicate that it was impossible to predict standard error.
جدول ۲- مقادیر پارامترهای حاصل از بهینه سازی مدل آدامر و همکاران برای چهار مجموعه داده موجود و ضرایب تعیین هر بیهینه سازی مقادیر داخل پراپان خطای میزان پارامتر مربوطه را نشان می‌دهد. PS معرف حساسیت به فتوپریود می‌باشد.

<table>
<thead>
<tr>
<th>Land race</th>
<th>Temperature °C</th>
<th>PS (d/h)</th>
<th>Is ((\text{day}))</th>
<th>Pi ((\text{day}))</th>
<th>Pd ((\text{day}))</th>
<th>a3 ((\text{day}))</th>
<th>a1 ((\text{day}))</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azarshahr</td>
<td>20/10</td>
<td>1.25</td>
<td>39.81(0.57)</td>
<td>7.54(+)</td>
<td>22.27(0.47)</td>
<td>0(-)</td>
<td>0.18(NC)</td>
<td>0.96</td>
</tr>
<tr>
<td>30/20</td>
<td>2.75</td>
<td></td>
<td>43.82(0.56)</td>
<td>6.55(-)</td>
<td>15.27(0.38)</td>
<td>0(-)</td>
<td>5.17(0.22)</td>
<td>0.96</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>41.81</td>
<td>7.04</td>
<td>18.77</td>
<td>0</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>Mashhad</td>
<td>20/10</td>
<td>1.05</td>
<td>21(0.456)</td>
<td>2.76(-)</td>
<td>8.24(0.33)</td>
<td>9.35(+)</td>
<td>1.65(0.31)</td>
<td>0.5</td>
</tr>
<tr>
<td>30/20</td>
<td>2.46</td>
<td></td>
<td>24(0.46)</td>
<td>2.14(-)</td>
<td>8.85(0.35)</td>
<td>6.35(+)</td>
<td>3.69(0.29)</td>
<td>0.72</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>22.5</td>
<td>2.45</td>
<td>8.54</td>
<td>7.82</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>%</td>
<td></td>
<td>1.859</td>
<td>--</td>
<td>1.685</td>
<td>--</td>
<td>1.041</td>
<td></td>
</tr>
</tbody>
</table>

주석:
- \((+) \) : خط تخته (-) : تفاوت با نمونه NC نشان دهنده عدم درک قابل توجهی در مقایسه مدل آدامز می‌باشد.

The dashed lines indicate that standard error was impossible to predict. NC means no convergence in computation of second partial derivative of \(CHI^2 \) corresponding to observations with respect to related parameters.
جهت صحت هرچه بیشتر تخمین های مدلهای فنولوژی طریق را مانند استاندارد تخمین سرعت نشان دهنده رو به مجموعه اثرات میانگین فنولوژی و دیگر میکروب‌های رانشی محیط نشان داده است. بررسی این روش برای شناسایی داده‌های مربوط به که‌های پارامترهای ۳α و ۱β در هر دو مدل به صورت ساختاری حکم یک عامل تخیلی گردان را در کل روزهای اول آغاز کننده (میکروب‌واستن مدل) دارند و بنابراین، احتمال می‌رود که همبستگی چندگانه می‌تواند وابسته به مدل و ترکیب خاص پارامترهای (اواخر روز) معنی دار باشد. این احتمال نیز وجود دارد که همبستگی‌های ساده‌بین خود پارامترها نیز معنی‌دار باشد.

ارائه‌های ساختاری فنولوژی حقیقتاً سازوکاری مستلزم اطلاعات مکنی درباره فرآیندهای فیزیولوژیک دخیل در کل فرآیند نیست جمله گلدینی مشاهده نمی‌شود. با این همه، اگر اثرات فنولوژی میانگین در طی فیزیولوژیک نگاه‌گیری می‌شود، تغییرات حساسیت می‌تواند در حال نمایش صورت زایش تخمین زده شود، امکان بهبود تخمین های مدلهای فنولوژی موجود نیز وجود دارد. یک چنین طرحی نتیجه‌ای از زمانی اگر این اجرای که زمان‌بندی نسبتاً صریحی است، فازهای مختلف وجود داشته باشد. در این راستا مدلهای تحلیل آدیوم و الیس به‌طور محبوب موجود برای پایه‌کردن چنین طرحی می‌باشد. این اگر آیا چنین طرحی می‌تواند به صورت صحیح یا نظریه‌ای خروجی‌های مدل‌های فنولوژی مشابه شود یا نه، به‌طور مATAB استفاده از داده‌های آزمایشی های متناسب امکان پذیر می‌باشد که در مقاله دیگری از این سری مقالات مورد آزمون قرار می‌گیرد.

مطالعه دیگری از سری مقالات مربوط به این تحقیق ارائه می‌شود.

تعداد جریه‌ها از نظر این داده جهت ورود به مرحله یازدهم گلدینی یا فاصله‌های حساس به فنوپوریدول دیر در توده آذرشهر در هر دو درجه حرارت به مراتب مشترک از توده مشهد می‌باشد. گرچه به واسطه عدم امکان محاسبه خطا منبع این پارامتر امکان مقایسه آماری فراهم نشد. اما در مقایسه با دیگر پارامترها تفاوتی بین دو توده محلی خیلی چشمگیر از نتایج بین دو درجه حرارت است و این چهار رسانه که احتمال درج حرارت مطلوب بین فاصله پایه خیلی کمتر از درجه حرارت روز به شیب ۲۰ درجه سانتی‌گراد باشد. یک چنین چهار به نظر می‌رسد حساسیت به درجه حرارت زن های فنوپوریدول در توده آذرشهر بیشتر از توده مشهد باشد چرا که در مدل آزمایشی ۲/۵/۰ و ۲۲/۰ درجه حرارت ۲۰۱۰ و ۳۰۰۰ به ترتیب حدود ۱۰ و ۲۰ درجه حرارت در دو درجه توده مشهد به ترتیب ۱۰ و ۱۲ روز است.

گرچه تفاوت هایی بین دو توده محلی به لحاظ پارامترهای هر در دو درجه آبزی و آماده معنی‌دار می‌باشد اما لازم است آزمایش‌های دیگری با تسویت بهتر در تیمارهای درجه حرارت و فنوپوریدول و نیز توده های محلی بیشتر انجام شود تا بتوان درخصوص ذائقه بودن این تفاوت‌ها حکم کرد. در این رابطه مهم ترین گرنه بحث استقلال به عدم استفاده فازهای مختلف یکی گردی است که اگر این فازها از یک‌گردی مستقل نباشند، تا گاه آن چنان که فرضیات در خصوص رفتار وسیعی به‌طور دهی‌ای نمونه گاهان و یا (Deterministic) می‌تواند به‌طور مستقل با استفاده از داده‌های آزمایشی یا متقابل امکان پذیر می‌باشد که در مقاله دیگری از این سری مقالات مورد آزمون قرار می‌گیرد.

References

مباحث مورد استفاده

بندگی علوم زراعی ایران. ۱۳۸۳. گردوآوری و بورسی خصوصیات یوتاکسیکا توده‌های محلی زیره سبز ایران. انتشارات سازمان پژوهش‌های علمی و صنعتی ایران. پژوهشکده خراسان.

An appraisal of photoperiod and temperature sensitive pre-flowering phase for two cumin (Cuminum cyminum L.) landraces

M. Sarmad Nabavi1 and H. Rahimian Mashhadi2

ABSTRACT

In order to evaluate the different photoperiod and temperature sensitive pre-flowering phases in two cumin landraces a reciprocal transfer experiment from photoperiod 8 h to 16 h and vice versa under two different day/night temperatures 20/10 and 30/20 °C was conducted. Two model including Ellis and Adams were used to analyse the data and to quantify the duration of different developmental phases. The results indicated a high probability for variation in photothermal responses among the cumin landraces of Iran. It was found that photoperiod sensitivity in Azarshahr is greater than Mashhad landrace. In addition it was found that temperature affects on the timing of different developmental phases. This is one of the main causes of errors in phonological models. Different behavior of temperature sensitive and insensitive phases provides the possibility of testing the hypothesis about the role of different gene groups in general developmental process. It was clear that the temperature sensitivity for photoperiod genes of Azarshahr landrace is higher than Mashhad landrace. These results would contribute to better understanding of variation in photoperiod and temperature sensitivity in cumin as well as optimization of phonological models.

Key words: Cumin, Photoperiod, Photoperiod sensitivity, Floral induction.

1 Ph.D. student in Agronomy, Ferdowsi University of Mashad. 2 Prof., of Tehran University. 3 M. S. of Tehran University.