بررسی واکنش ژنوتیپ‌های ذرت نسبت به بیماری پوسیدگی فوزاریومی بالال

Study of response of maize genotypes to Fusarium Ear Rot

مجید زمانی و حسین حدادی

چکیده

بیماری پوسیدگی فوزاریومی بالال، یکی از بیماری‌های مهم درخت در مناطق مرطوب و نیمه‌مرطوب است که باعث کاهش کمی و کیفی محصول ذرت می‌شود. به‌منظور بررسی میزان مقاومت و حساسیت ژنوتیپ‌های ذرت نسبت به بیماری پوسیدگی فوزاریومی بالال، نمونه‌گیری 200 نمونه در سال 1381 و 200 ترکیب در سال 1382 در قالب طرح آزمایش‌های گوناگون پایه‌ای کاملاً تصادفی در دو کرار دو منطقه کرج و ساری مورد مطالعه قرار گرفتند. یافته‌ها نشان داد که در سه شرایط مختلف، ویژه بخش رشد از ژنوتیپ‌ها با استفاده از شاخه‌گردش بیماری در زمان رسیدن فیزیولوژیکی مورد آزمایش قرار گرفتند. نتایج حاصل از تجربه یاری‌ای در بیماری، مقاومت و مقایسه میانگین داده‌ها در سال 1381 نشان داد که سه لاین خاصی، که K 247 و K 3530 و K 4-4-18 پایدارترین لاین‌های مقاوم بودند و لاین‌های دیگری که بین K 18 x K 18 و K 3640/3 x K 247 نیز در مقاومت و همچنین نسبت دارند و مقاومت آنها را می‌توان با لاین‌پدیدری آنها که مقاوم به بیماری است مربوط دانست.

واژه‌های کلیدی: ذرت، پوسیدگی فوزاریومی بالال، مقاومت، ژنوتیپ.

مقدمه

یکی از مهم ترین عوامل پوسیدگی بالال، قارچ فوزاریوم است که دارای پراکنش جهانی است. پوسیدگی بالال عمدتاً توسط دانه‌های آلوده پراکنده‌باد پوشش می‌سیلوس سفید مایل به صورتی، مشخص می‌شود. (Farrar and Daveis, 1991) فوزاریومی بالال در بذر ذرت وجود دارد و موجب کاهش قوه نامیه و بررسی این عوامل اوال با سری تحقیقات باشرکاری مازندران، مورد به‌значانه تحقیقات اصلاح و نهایت نهایی و بذر نهایت نهایی و بذر مورد تحقیقات کشاورزی مازندران

۱۲۳
پیکن و همکاران (1992) بحث‌های قابل توجهی در مورد مسیر آلودگی دانه‌های کرده‌هند برخی تصور می کنند که فواریچه‌های یا از طریق رشد در طول ساقه، به F. moniliforme درون محرک مزرعه یکا (Rachila) یا پیدسل وارد سیستم را آلوده می‌سازند. و از طریق زخم‌های (Scars) روز پریکاربک که توسط کلونیرز، پس از زدن دانه ایجاد می شود وارد دانه می شوند (Leonian, 1932)، نتایج نیز بر این امتداد کاک و نوک بلاه به سطح دانه آسیس و از طریق پدسل پریکاربک است و بخش آسیس محرک (Koehl, 1942) به عنوان یک فواریچه از طریق رشد امکان‌پذیر بوده است. اینکه F. moniliforme باورا که فواریچه در Navar و Diaz و در حالان که پیش توسط Nankam (1996) اظهار داشته که برخور در آلودگی به فوزالریوم در محصولات مختلف بذر می تواند تا ۱۰۰٪ محصول را از بین برده.

کوهیلر (1942) و F. moniliforme قوه در بلاده‌های کامل و رسیده‌های دراز فواریچه داد و بیان کرد که آلودگی تا زمانی که بلاله می بلور نرسند، مستمر نمی شود. در این باره هوسلین و بواتست (Hesseihelte and Bothast, 1977) گزارش داشتند که گونه‌های مختلف فوزالریوم در سریون هفته بعد از ظهور کاک‌ها از جان دانه‌های آسیس و پیش آن در هشتمین هفته به او اوج خود می رسد. را F. moniliforme کینگ (King, 1981) نیز گزارش کنگ (1974) در این مورد به ۵۰٪ تاره‌های ابریشمی (Mid silk) چندر کرد و بیان کرد که میزان آلودگی ۲۳-۳۳ درصد تا هفته دهم افزایش می یابد و به ۱۰۰٪ (Windels et al., 1976) گزارش دادند که آلودگی دانه احتمالاً با مانع این کاک‌ها به صورت هواساز و یا باحیز زاد انجماد می شود. به اعتقاد آن‌ها حشراتی که در ارتباط با ذرت هستند ممکن است نقش مهمی در ایجاد بیماری به عنوان ناقل یا شکارچی داشته باشد و فعالیت آن‌ها ممکن است شرایط ورود قارچ را به درون گیاهان فراهم سازد اما کنگ (1974) بیان کرد که یکی از عوامل مؤثر در انتشار کبیده‌های F. moniliforme باد است و چریان باد می‌تواند موجب انتشار طولانی و گسترش میکرو کبیده‌ها گردد.
مواد و روش‌ها

مطالعات آزمایشگاهی

الف - جمع‌آوری و جداسازی عامل بیماری‌زا

طبق دو سال ۱۳۸۱ تعدادی نمونه مشکوک و آلوده به بیماری فورسیزومی از زمره مختلف اصلاحی در کرج و ساری جمع‌آوری و به آزمایشگاه منتقل گردید. به منظور جداسازی عامل بیماری‌زا پوسیدگی بلوگر (Ear rot) بالمانه‌ها آلوده نهاده می‌شدند. این نمونه‌ها با محلول کلرادکس ۱/۰ به مدت ۱۲ دقیقه ضدعفونی سطحی و بسیار روی می‌شدند. پس از سه روز، آمار بودارهایی از فرآیند جدا شده شروع گردید و در نهایت عملیات خالص سازی و تک‌اسبور شناسایی F. moniliforme و گونه‌گر گردید.

ب - تهیه اینوکولوم و مایه زنی

جهت تهیه اینوکولوم از سوسپانسیون اسپور بای، دانه‌های پولک استفاده شد. به‌دین ترتیب که دانه‌های پولک از استوانه‌های تحقیق و صیفک‌ها به میزان ۵ × حجم ظرف ریخته شد و برش‌های کوچکی از جذب‌ها به قطری از میلی‌متر بسیاری و دو جذب‌های از کرچ (به صورت مخلوط در آن قرار داده شد تا به مدت ۱۰-۱۲ روز در انکوباسیون رشد کندند) برای ایجاد آلودگی پوسیدگی بالمان (Ear rot)، سوسپانسیون اسپور به غلظت ۱۰۱ در هر میلی‌متر به شدت شد و ۷-۱۰ روز بعد از گردهافشانی عمل مایه‌زنی در وسط پلاک با استفاده از روش ایجاد زخم بالمان (Nail Punch) انجام گرفت.

مطالعات زرع‌های

الف - کاشت لاک‌ها و هیرپیدهایی درت

به منظور تبعیض میزان مقاومت شهروند به بیماری فورسیزومی، تعداد ۲۰ لاک خالص در سال ۱۳۸۱ به دست آمده از مواد استخراجی بهینه تحقیقات درختی و گیاهان علف‌های هستند، طی آزمایش‌های جدایگران دائمی در قالب طرح بلوک کامل کلمنتینس و همکاران (Clements et al., 2003) بیماری کردن که شدت بیماری پوسیدگی فورسیزومی بالای میزان فرمیشین در دانه و بالامه ویژگی متوسطی دارد. بوسیله و همکاران (Bush et al., 2004) نیز معتقدند برداشت سریع بالانه می‌تواند یک راهبرد مناسب برای کنترل این بیماری و کمکت به کاهش سطح آلودگی باد باشد. نظر به این که دانه‌ها بدون علامت ظاهری بیماری هم ممکن است به قارچ آلوده باشند لذا از نظر سلامت غذایی نیز، بیماری مکرر به‌راه می‌یابد و به‌ویژه درد و کنترل اقتصادی آن یک امر حیاتی است.

(Warfield and Davis, 1996)

استفاده از هیپریدهای مقاوم نسبت به مبارزه‌شیمیایی و زراعی از برتری خاصی برخوردار است. پیشرفت‌های اصلاحی در زمینه مقاومت به پوسیدگی شکاف و بالامه با استفاده از آلودگی مصنوعی (Stalk and Ear rot) انجام گرفته است (Deleon and Pandey, 1989) براساس گزارش هواکر (Hooker, 1956) و روانه‌پذیری مقاومت به پوسیدگی بالامه بیشتر است و انواع متعددی از مکانیسم‌های راه‌های در این زمینه گزارش شده است.

ناول (1994) معنی‌دار است به‌منظور مکانیسم‌های مقاومت نوع‌آانه‌ای بوده و می‌توان در کبد دوره نسبتاً کوتاه، بهره‌زیانی بالاتر از نظر مقاومت به دست آورد. مکانیسم‌های مقاومت به آلودگی موضعی دانه‌های ذرت توسط فورسیزومی به طور کامل در دنده است. اما با این وجود آلودگی موضعی می‌تواند به کاکل، پریکرب، لای‌آلورون، پدیس و توکسی ساکسین که همان لایه‌ای می‌باشد مربوط باشد. (Clements et al., 2004)

هدف نهایی از اجرای این آزمایش‌ها، شناسایی لاک‌ها و هیرپیدهایی مقاوم و نقش این لاک‌ها در ترکیب‌های جدیدی است.
محاسبه و مقاومت لاین‌ها و ترکیب‌ها تعمیم گردد (جدول 1). داده‌های به دست آمده از این آزمایش‌ها از نظر توزیع نرمال و یک‌پارامتر آزمون گرندتر و بر اساس Arc sin X π/2 تبدیل داده‌ها انجام شد. تجربه آماری با استفاده از نرم‌افزار MSTAT-C انجام گردید. آماره با استفاده از نرم‌افزار MSTAT-C انجام گردید. در نهایت پس از امیزش‌کنی لاین‌ها و ترکیب‌ها از نظر بیماری پوسیدگی فوزاریومی بلال، داده‌های حاصل تجزیه واریانس شدند و بر اساس مقایسه گوناگون نمرات ابزاری (جدول 2)، کلیه لاین‌ها و ترکیب‌ها از نظر حساسیت به بیماری در گروه‌های مختلف طبقه‌بندی شدند.

جدول 1- تعیین درصد آلودگی لاین‌ها به بیماری پوسیدگی بلال برشی به شدت بیماری در روش (Disease severity) (Nail Punch)

<table>
<thead>
<tr>
<th>درصد آلودگی</th>
<th>نمره</th>
<th>پیشنهاد پیامدهای در بلال</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون آلودگی</td>
<td>0%</td>
<td>بدون تاخیر و تشدید</td>
</tr>
<tr>
<td>آلودگی محدود به چند دانه اطراف محل میان‌شینی</td>
<td>10%</td>
<td>تاخیر و تشدید محدود</td>
</tr>
<tr>
<td>آلودگی در 1/4 بلال</td>
<td>25%</td>
<td>تاخیر و تشدید متوسط</td>
</tr>
<tr>
<td>آلودگی تا 1/2 بلال</td>
<td>50%</td>
<td>تاخیر و تشدید شدید</td>
</tr>
<tr>
<td>آلودگی در بیش از نصف بلال</td>
<td>75%</td>
<td>تاخیر و تشدید بسیار شدید</td>
</tr>
<tr>
<td>آلودگی کل بلال</td>
<td>100%</td>
<td>تاخیر و تشدید بسیار شدید</td>
</tr>
</tbody>
</table>

جدول 2- گروه‌بندی لاین‌ها و ترکیب‌ها از نظر واکنش به بیماری پوسیدگی فوزاریومی بلال برشی به شدت بیماری در روش (Disease severity)

<table>
<thead>
<tr>
<th>میانگین نمره ابزاری</th>
<th>گروه‌بندی از نظر واکنش</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقاوم (R)</td>
<td>1-2</td>
</tr>
<tr>
<td>نیم مقاوم (MR)</td>
<td>2-1-3</td>
</tr>
<tr>
<td>حساس (S)</td>
<td>3-4</td>
</tr>
<tr>
<td>بسیار حساس (HS)</td>
<td>4-1-6</td>
</tr>
</tbody>
</table>

نتایج و بحث

تجزیه و ارتباط مرکب داده‌های به دست آمده از شدت بیماری پوسیدگی فوزاریومی بلال در

لاین‌های خالص نشان داد که به احتمال 99 درصد بین لاین‌های خالص درد اختلاف معنی‌داری وجود دارد.
جدول 3- تجزیه واریانس مرکب شدت بیماری پوسیدگی فوزاریومی بلال در لاشه‌های خالص ذرت در سال 1381
Table 3. Combined analysis of variance of disease severity of Fusarium ear rot on maize lines in 2002

<table>
<thead>
<tr>
<th>منابع تغییرات (S.O.V.)</th>
<th>درجه آزادی (d.f.)</th>
<th>میانگین مربعات (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (L)</td>
<td>منطقه</td>
<td>1</td>
</tr>
<tr>
<td>Error 1 (E1)</td>
<td>اشتباه</td>
<td>2</td>
</tr>
<tr>
<td>Line (A)</td>
<td>لاشه‌های خالص</td>
<td>29</td>
</tr>
<tr>
<td>Line x Location (LA)</td>
<td>لاشه‌های خالص × منطقه</td>
<td>29</td>
</tr>
<tr>
<td>Error 2 (E2)</td>
<td>اشتباه آزمایش</td>
<td>58</td>
</tr>
</tbody>
</table>

کoeffیسیانٹ واریانس (COV) ضریب تغییرات
24.02

** and *: Significant at %1 level and not significantly respectively.

جدول 4- ارزیابی و گروه‌بندی لاشه‌های خالص ذرت نسبت به بیماری پوسیدگی فوزاریومی بلال در سال 1381
Table 4. Evaluation and ranking of maize lines to Fusarium ear rot in 2002

<table>
<thead>
<tr>
<th>ردیف</th>
<th>لاشه (Line)</th>
<th>میانگین شدت بیماری (درصد) (Mean of Disease severity % (DS))</th>
<th>واکنش (Reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KLM 76006/2-1-1-1-3-1</td>
<td>52</td>
<td>HS</td>
</tr>
<tr>
<td>2</td>
<td>K 47/2-2-1-4-1</td>
<td>20.75</td>
<td>MR</td>
</tr>
<tr>
<td>3</td>
<td>K 47/2-2-1-4-2</td>
<td>24.25</td>
<td>MR</td>
</tr>
<tr>
<td>4</td>
<td>K 47/2-2-1-21-2</td>
<td>16.75</td>
<td>MR</td>
</tr>
<tr>
<td>5</td>
<td>K 48/3-1-1-2-1</td>
<td>22.25</td>
<td>MR</td>
</tr>
<tr>
<td>6</td>
<td>K 247/6-2-1-4-4</td>
<td>9.25</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>KLM 76004/2-1-1-1</td>
<td>17.5</td>
<td>MR</td>
</tr>
<tr>
<td>8</td>
<td>KLM 76010/1-13-1-3</td>
<td>21.75</td>
<td>MR</td>
</tr>
<tr>
<td>9</td>
<td>K 3530/1</td>
<td>9.50</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>KLM 75012/6-2-3-2-2</td>
<td>25.50</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>K 47/2-2-1-2-3</td>
<td>23.25</td>
<td>MR</td>
</tr>
<tr>
<td>12</td>
<td>K 47/2-2-1-21-3</td>
<td>21.75</td>
<td>MR</td>
</tr>
<tr>
<td>13</td>
<td>K 47/2-2-1-22-2</td>
<td>38.25</td>
<td>S</td>
</tr>
<tr>
<td>14</td>
<td>K 48/3-1-1-2-1</td>
<td>23.5</td>
<td>MR</td>
</tr>
<tr>
<td>15</td>
<td>K 48/3-1-27-1</td>
<td>19.5</td>
<td>MR</td>
</tr>
<tr>
<td>16</td>
<td>K 166/1-2-1-1-5</td>
<td>22.5</td>
<td>MR</td>
</tr>
<tr>
<td>17</td>
<td>K 166/1-3-1-11-1B</td>
<td>24.75</td>
<td>MR</td>
</tr>
<tr>
<td>18</td>
<td>K 3304/1-2</td>
<td>52.25</td>
<td>HS</td>
</tr>
<tr>
<td>19</td>
<td>K 3615/1</td>
<td>25.25</td>
<td>S</td>
</tr>
<tr>
<td>20</td>
<td>K 3615/2</td>
<td>19.75</td>
<td>MR</td>
</tr>
<tr>
<td>21</td>
<td>K 74/1</td>
<td>50.25</td>
<td>HS</td>
</tr>
<tr>
<td>22</td>
<td>K 18</td>
<td>9.50</td>
<td>R</td>
</tr>
<tr>
<td>23</td>
<td>B 73</td>
<td>21.75</td>
<td>MR</td>
</tr>
<tr>
<td>24</td>
<td>MO 17</td>
<td>30</td>
<td>S</td>
</tr>
<tr>
<td>25</td>
<td>K 19</td>
<td>26.5</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>K 19/1</td>
<td>15.75</td>
<td>MR</td>
</tr>
<tr>
<td>27</td>
<td>K 19/2</td>
<td>25.25</td>
<td>S</td>
</tr>
<tr>
<td>28</td>
<td>K 3544/4</td>
<td>50.50</td>
<td>HS</td>
</tr>
<tr>
<td>29</td>
<td>K 3640/5-1</td>
<td>22.75</td>
<td>MR</td>
</tr>
<tr>
<td>30</td>
<td>K 1264/1</td>
<td>22.75</td>
<td>MR</td>
</tr>
</tbody>
</table>

Mean: 25.47
LSD (%1): 9.76

R: Resistnt, MR: Moderately resistant, S: Susceptible, HS: Highly susceptible
مجلة علم زراعی ایران، جلد هفتم، شماره 2، تابستان 1384

این مقایسه میانگین‌های (جدول 4) نشان داد که از میان 30 این خاصیت دو در منطقه کرج و ساری 12/33\% لاین‌ها نسبت به پوسیدگی برای بیمار حساس هستند و لاین-2 330/401 K از لاین‌های بیمار حساس به بیماری است. 57/67\% لاین‌ها مقاومت نسبی از خود نشان دادند و در گروه نیمه مقاوم (MR) قرار گرفتند. 20/70\% لاین‌ها در گروه حساس (S) و نشان داد که درصد از لاین‌ها مقاومت بالایی از خود نشان دادند که آن‌ها کمتر از 10\% بود. این لاین‌ها که به عنوان لاین‌های مقاوم شناسایی شدند شامل K355301/8، K355301/18 و K355301/24 است. این لاین‌ها هیچ توانایی در برخورداری یا نسبی استفاده قرار گیرند و دلیل این مقاومت از نظر بیمار مربوط به چگونگی توجه کم است.

از نظر دو در منطقه کرج و ساری بهبود دارد. نسبت به پوسیدگی برای بیمار حساس هستند و لاین-2 330/401 K از لاین‌های بیمار حساس به بیماری است. 57/67\% لاین‌ها مقاومت نسبی از خود نشان دادند و در گروه نیمه مقاوم (MR) قرار گرفتند. 20/70\% لاین‌ها در گروه حساس (S) و نشان داد که درصد از لاین‌ها مقاومت بالایی از خود نشان دادند که آن‌ها کمتر از 10\% بود. این لاین‌ها که به عنوان لاین‌های مقاوم شناسایی شدند شامل K355301/8، K355301/18 و K355301/24 است. این لاین‌ها هیچ توانایی در برخورداری یا نسبی استفاده قرار گیرند و دلیل این مقاومت از نظر بیمار مربوط به چگونگی توجه کم است.

در نتیجه و برای مقایسه بیماری پوسیدگی از نظر دو در منطقه کرج و ساری بهبود دارد. نسبت به پوسیدگی برای بیمار حساس هستند و لاین-2 330/401 K از لاین‌های بیمار حساس به بیماری است. 57/67\% لاین‌ها مقاومت نسبی از خود نشان دادند و در گروه نیمه مقاوم (MR) قرار گرفتند. 20/70\% لاین‌ها در گروه حساس (S) و نشان داد که درصد از لاین‌ها مقاومت بالایی از خود نشان دادند که آن‌ها کمتر از 10\% بود. این لاین‌ها که به عنوان لاین‌های مقاوم شناسایی شدند شامل K355301/8، K355301/18 و K355301/24 است. این لاین‌ها هیچ توانایی در برخورداری یا نسبی استفاده قرار گیرند و دلیل این مقاومت از نظر بیمار مربوط به چگونگی توجه کم است.

از نظر دو در منطقه کرج و ساری بهبود دارد. نسبت به پوسیدگی برای بیمار حساس هستند و لاین-2 330/401 K از لاین‌های بیمار حساس به بیماری است. 57/67\% لاین‌ها مقاومت نسبی از خود نشان دادند و در گروه نیمه مقاوم (MR) قرار گرفتند. 20/70\% لاین‌ها در گروه حساس (S) و نشان Dاد که درصد از لاین‌ها مقاومت بالایی از خود نشان دادند که آن‌ها کمتر از 10\% بود. این لاین‌ها که به عنوان لاین‌های مقاوم شناسایی شدند شامل K355301/8، K355301/18 و K355301/24 است. این لاین‌ها هیچ توانایی در برخورداری یا نسبی استفاده قرار گیرند و دلیل این مقاومت از نظر بیمار مربوط به چگونگی توجه کم است.

از نظر دو در منطقه کرج و ساری بهبود دارد. نسبت به پوسیدگی برای بیمار حساس هستند و لاین-2 330/401 K از لاین‌های بیمار حساس به بیماری است. 57/67\% لاین‌ها مقاومت نسبی از خود نشان Dادند و در گروه نیمه مقاوم (MR) قرار گرفتند. 20/70\% لاین‌ها در گروه حساس (S) و نشان Dاد که درصد از Lاین‌ها مقاومت بالایی از خود نشان Dادند که آن‌ها کمتر از 10\% Bود. این Lاین‌ها که به عنوان Lاین‌های مقاوم شناسایی شدند شامل K355301/8، K355301/18 و K355301/24 است. این Lاین‌ها هیچ Tوانایی در برخورداری یا Nسبی استفاده Cرار گیرند و Dلیل این مقاومت Gزینتیک است زیرا در روش ماژونی با Gیابادارم خ م پالاس Tگردب سال 82 در جدول شماره 5 اثرات گردیده است. به احتمال 99 درصد بین هریبدها مورد بررسی اختلاف معنی‌داری وجود دارد. اثر مقاولی هیریبدها × طبقه (LA) معنی‌دار نیست که نشان دهنده شرایط یکسان در توزیع بیماری و عکس عملیاتی نکته‌ای در دو منطقه است. لذا براساس عکس عملیاتی نکته‌ای نسبت به بیماری پوسیدگی بالای دو منطقه و براساس میانگین نمرات اکسپلایر، کلیه هیریبدها از نظر واکنش حساسیت به بیماری به گروه‌های مختلف تقسیم شدند که نتایج آن در جدول شماره 7 ارائه شده است.
جدول ۵ - تجزیه واریانس مرکب شدت بیماری پوسیدگی فوزاریومی بلال در هیریدهای ذرت در سال ۱۳۸۲
Table 5. Combined analysis of variance of disease severity of Fusarium ear rot on maize hybrids in 2003

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مربعات (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (L)</td>
<td>۱</td>
<td>۳۷۴.۵۳۳***</td>
</tr>
<tr>
<td>Error 1 (E₁)</td>
<td>۲</td>
<td>۳۸.۲۱۷</td>
</tr>
<tr>
<td>Hybrid (A)</td>
<td>۲۹</td>
<td>۷۴.۹۴۱**</td>
</tr>
<tr>
<td>Hybrid x Location (LA)</td>
<td>۲۹</td>
<td>۱۹.۱۸۹***</td>
</tr>
<tr>
<td>Error 2 (E₂)</td>
<td>۵۸</td>
<td>۱۴.۰۴۴</td>
</tr>
<tr>
<td>Coefficient of variation (% CV)</td>
<td></td>
<td>۱۹.۸۸</td>
</tr>
</tbody>
</table>

** و ***: به ترتیب معنی‌دار در سطح ۱٪ و غیر معنی‌دار.

و ** و ***: Significant at 1% level and not significantly respectively.

جدول ۶ - ارزیابی و گروه‌بندی هیریدهای ذرت نسبت به بیماری پوسیدگی فوزاریومی بلال در سال ۱۳۸۲
Table 6. Evaluation and ranking of maize hybrids to Fusarium ear rot in 2003

<table>
<thead>
<tr>
<th>هیرید</th>
<th>میانگین شدت بیماری (درصد)</th>
<th>واکنش</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLM 78016/4-I x K 74/1</td>
<td>۱۹</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78013/1-I x K 74/1</td>
<td>۱۹.۷۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78026/6-I x K 74/1</td>
<td>۱۷.۷۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78034/4-I x K 19</td>
<td>۱۹</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78016/4-I x K 9</td>
<td>۱۹</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78023/10-2-I x K 19</td>
<td>۱۹</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78012/10-I x MO 17</td>
<td>۲۱.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78023/35-1-I x MO 17</td>
<td>۱۹.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78023/42-1-I x MO 17</td>
<td>۱۶.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78012/6-I x MO 17</td>
<td>۱۷</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78005/22-1-I x K 18</td>
<td>۲۱</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78011/3-I x K 18</td>
<td>۱۶.۷۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78016/4-2-I x K 18</td>
<td>۲۰.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>KLM 78018/6-1-I x K 18</td>
<td>۲۴.۷۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 47/2-2-1-2-1-I x K 74/1</td>
<td>۱۴.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 47/2-2-1-2-2-I x K 74/1</td>
<td>۱۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 3640/3 x K 74/1</td>
<td>۲۵.۵</td>
<td>S</td>
</tr>
<tr>
<td>K 47/2-2-1-2-I x K 74/1</td>
<td>۱۹</td>
<td>MR</td>
</tr>
<tr>
<td>K 3530/1-I x K 74/1</td>
<td>۲۲</td>
<td>MR</td>
</tr>
<tr>
<td>K 3640/5-1-I x K 74/1</td>
<td>۲۷.۷۵</td>
<td>S</td>
</tr>
<tr>
<td>K 3529/2 x K 19</td>
<td>۲۹.۵۰</td>
<td>S</td>
</tr>
<tr>
<td>K 47/2-2-1-2-1-I x MO 17</td>
<td>۱۸</td>
<td>MR</td>
</tr>
<tr>
<td>K 3640/3 x K 18</td>
<td>۱۱.۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 47/2-2-1-4-4-I x MO 17</td>
<td>۱۴.۵۰</td>
<td>MR</td>
</tr>
<tr>
<td>K 166 B x K 74/1</td>
<td>۱۹.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 3530/5 x K 19</td>
<td>۱۵</td>
<td>MR</td>
</tr>
<tr>
<td>K 166 B x K 19</td>
<td>۲۲.۷۵</td>
<td>MR</td>
</tr>
<tr>
<td>K SC 700</td>
<td>۱۳.۵۰</td>
<td>MR</td>
</tr>
<tr>
<td>K SC 647</td>
<td>۲۲.۲۵</td>
<td>MR</td>
</tr>
<tr>
<td>K SC 704</td>
<td>۲۱.۲۵</td>
<td>MR</td>
</tr>
</tbody>
</table>

Mean ۱۸.۸۴
LSD (% 1) ۷.۰۵

مقدار (R)، نیمه مقدار (MR)، حساس (S)، بیمار حساس (HS)
R: Resistant, MR: Moderately Resistant, S: Susceptible, HS: Highly Susceptible
مقاومت به صورت والدین مقاوم و برنامه‌های تولید هیبرید استفاده گردد. تأثیر ان بررسی زیست نیشان می‌دهد که از طریق M 18 KTO می‌توان در برنامه‌های تولید هیبریدهای بار دارد. در تجرب مصونی به بودسیری‌گی باد توسط گونه‌های مختلف فورزریوم کارداری متعادل انجم درها، اما تنوع رو به آماده‌رسی و اختلاف گونه‌های پاتوزن میزان اطلاعات منبع نوشتار را محدود ساخته است (Gendlof, et al., 1986).

در این آزمایش که از آزمایش بالا و ترکیبات ذرت با استفاده از تکنیک آلودگی مصنوعی اجرا کرده به منظور گرفتن، میزان مقاومت یافت. و ترکیبات ذرت مشخص شد و اختلاف بین موارد از نظر حساسیت به بیماری ملاحظه گردیده. با استفاده از ان تکنیک و مجموعه عواملی که برای بیماری لازم بود به کار برده شد و مکانیسم برخورد مورفولوژیکی میزان از عامل بیماریا متفق گردید.

در مجموع می‌توان اطمینان کرد که تفاوت‌های این در میزان حساسیت با مقاومت نسبت ترکیب‌های نسبت به بیماری پوسیدگی بالا به قدرت نسبی جدایی‌ها، خصوصیات میزان و شاخص‌های مرتبط با میزان بیماری بستگی دارد و لازم است این عوامل آن‌ها در ارزیابی مقاومت زرم پلیامین نسبت به این بیماری مورد نظر قرار گیرد.

با توجه به تئوری تحقیقات و کوشش‌های به عمل آمد در مورد مبارزه با بیماری پوسیدگی فورزریوم بالا، استفاده از ارقام مقاوم با تحمل مؤثرترین و میانگین روش کنترل بیماری به نظر می‌رسد. امید است ضمن بهره‌گیری از کلیه امکانات موجود و به کارگیری آمیختگی دستاوردهای علمی در قالب یک برنامه اصلاحی محدود و راهبردی ارقام و ترکیب‌های مقاوم را پیوست معرفی کرد.

همان طور که در جدول ۶ دیده می‌شود از میان ۴۰ هیبرید ذرت که در دو منطقه کرخ و ساری در سال ۱۳۸۲ مورد بررسی قرار گرفتهند تا سه هیبرید نسبت به این بیماری حساس بودند که دو هیبرید K ۳۶۴۰/۵۱ و K ۷۴ و K ۳۵۹/۲×K ۱۹ هیبریدها هستند. ۲۷ هیبرید در گروه متحمل (MR) قرار گرفته که آلودگی آنها کمتر از ۲۵ درصد بود. این امر نشان می‌دهد که هیبریدها نسبت به آنها تحمل بیشتر دارند. در این آزمایش دو هیبرید نسبتاً مقاوم شناسایی شدند. این دو هیبرید هر یک K ۷۴/۱×K ۱۸ (K SC ۷۰۰) و K ۳۶۴۰/۳×K ۱۸

رشد کلی در آنها در میزان محل زخم متوسط شده بود و تفاوت‌های اطراف محل آلودگی انفلو ساده بود. این مقاومت نسبی را می‌توان به مقاومت دانه‌ها و میزان رطوبت بالا کاکلی و دانه‌ها در زمان میان‌ریزی مربوط دانست. از جدول ۳ چندین استناد مقاوم که وقتی لای موارد K ۱۸ در یک ترکیب شرکت می‌کند، می‌توانند هیبریدهای متحمل تا کمی مقاوم ایجاد کند. مقایسه دو ترکیب K ۷۴/۱×K ۳۶۴۰/۵×K ۱۸ چندین شدت در تعداد نسبی حساس و مقاوم ارزیابی شده‌اند. نشان می‌دهد که حضور این K ۱۸ به عنوان والد پدیده توانسته است در ترکیب مقاومت ایجاد کند. در این رابطه، چکار ان و زمانی (۱۳۸۳) گزارش دادند که تفاوت‌های حاصل از لای موارد K ۱۸ به طور کلی کاهش بیماری را نشان می‌دهند. هدی‌کار و همکاران در ارزیابی و اکتش ۴۹ اینبرد (Headrick, et al., 1990) بر ارتباط بین زنگ و طول کاکل را مورد ارزیابی قرار دادند تزیم کردن که انتخاب والدین می‌باشد گونه‌های باشد که دوره پری زودرس به تأخیر افتاد و هم چنین از منابع مشخص شده‌
References

Koehler, B. 1942. Natural mode of entrance of fungi into corn ears and some symptoms that indicate infection. J. Agric. Res. 64:421-422.

Study of reactions of maize genotypes reactions to Fusarium Ear Rot

Zamani, M1. and H. Hadadi2

ABSTRACT

One of the most important diseases of corn in humid regions is Fusarium Ear Rot that causes reduction in quantity and quality of grain yield. In order to determine the reactions of different maize genotypes, to Fusarium Ear Rot an experiment was carried out with 30 inbred lines and 30 hybrids using RCBD at Karaj and Sari experimental field Staitions in 2002 and 2003 cropping seasons. In this study Nail punch method was used and all of the ears were inoculated at flowering stage. Genotypes were evaluated using disease severity index at physiological maturity stage. Results in 2002 cropping season, showed that K 18, K 247/6-2-1-4-4 and K 3530/1 inbred lines were resistant to Ear Rot. This resistance can be associated to low moisture of silk or genetic resistance of kernels at inoculating time. The results of experiment in 2003 cropping season also showed that, among 30 new hybrids, K 74/1 x K 18 and K 3640/3 x K 18 were resistant to Fusarium Ear Rot and the remaining genotypes were grouped as tolerant to the disease. This type of resistance can be associated to male parent (K18) which is resistant.

Key words: Maize, Fusarium Ear Rot, Resistance, Genotypes, Tolerant.

1- Faculty member, Seed and Plant Improvement Institute, Karaj, Iran.
2- Faculty member, Mazandran Agriculture and Natural Resources Research Center, Sari, Iran.