Effect of different tillage methods on grain yield and its components in wheat cv. Alvand under East Azarbayjan conditions

در شرایط آذربایجان شرقی

علي سالکزمانی

چکیده

به منظور بررسی اثر روش‌های مختلف خاک‌ورزی در طی دو سال متوالی بر عملکرد و اجزا عملکرد دانه غذایی روش‌های مختلف خاک‌ورزی بر عملکرد و اجزا عملکرد دانه گندم رقم الوند در شرایط آذربایجان شرقی انجام شد.

کلمات کلیدی: خاک‌ورزی، عملکرد دانه، خاک‌ورزی، اجزا عملکرد دانه

عکس جزء علمی بررسی تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی (آکادمی کشاورزی، پایه نگار: ا.ا.ا.ا.ا.)
این ازمانه در ایجاد و روشن کردن خاک‌های مختلف با دقت تحلیلی خاک در شرایط اذربایجان شرقی بود.

موانع و روش

که و در نتیجه افزایش عملکرد با حفظ پایداری خاک در شرایط استرس بینی یافت.

Catizone et al., 1995

(Platonov et al., 1992)

روش‌های خاک وری موجب افزایش عملکرد کندم شده اند. سالکه زمانی و (KF2.5) گزارش نمودند که تا آثاری شاید داشته باشد. اثر سه روش خاک‌وری با پنج‌گانه، دیسک و بی‌بخار خاک‌وری بر عملکرد کندم زمانها تحت آماری شاید نداند که

همدانی (KF2-3/0-4 + KF2-5/1-5) انجام کرده. داده‌های عملکرد دانه و اجزای عملکرد کندم سال دوم برای ارزیابی و ارائه جمع‌آوری کردیم.

این انجام عملیات خاک‌وری و کاشت نکرده از ابایار (ایجاد بودن) اقدام به که در کنار تیمارها کردیم. کندم رقم اولین که رقم

Gill and Aulakh, 1990

در مورد اثر روش‌های مختلف خاک‌وری عملکرد کندم ای و اجزاء ان نشان می‌دهد که عملکرد دانه تحت تأثیر عملیات خاک‌وری بود و وزن هزار دانه و ارتفاع بوته عکسی عملی نسبت به تیمارهای مختلف خاک‌وری نشان داده.

هدف از این تحقیق بررسی روش‌های مختلف تهیه زمان با ادوات مداوم در کشت کندم پایین‌تر چه جهت

فراهم نمودن شرایط بهینه سبز شدن بذر و استقرار باشد.
Table 1. Soil physio-chemical properties for the experimental site (before experiment)

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Ec (ds/m)</th>
<th>pH of saturated soil</th>
<th>Neutral materials (%)</th>
<th>Organic Carbon (%)</th>
<th>Available N (%)</th>
<th>Available P (mg/kg)</th>
<th>Available K (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>5.57</td>
<td>7.9</td>
<td>9.5</td>
<td>1.09</td>
<td>0.10</td>
<td>21.4</td>
<td>650</td>
</tr>
<tr>
<td>15-30</td>
<td>2.06</td>
<td>8.2</td>
<td>8.5</td>
<td>1.01</td>
<td>0.10</td>
<td>14.6</td>
<td>600</td>
</tr>
<tr>
<td>30-50</td>
<td>3.35</td>
<td>8.0</td>
<td>8.8</td>
<td>0.87</td>
<td>0.09</td>
<td>8.4</td>
<td>520</td>
</tr>
<tr>
<td>50-90</td>
<td>3.77</td>
<td>8.0</td>
<td>5.5</td>
<td>0.50</td>
<td>0.05</td>
<td>5.0</td>
<td>360</td>
</tr>
<tr>
<td>90-130</td>
<td>3.14</td>
<td>8.2</td>
<td>2.5</td>
<td>0.15</td>
<td>0.02</td>
<td>2.6</td>
<td>300</td>
</tr>
<tr>
<td>>130</td>
<td>6.14</td>
<td>8.0</td>
<td>3.0</td>
<td>0.08</td>
<td>0.01</td>
<td>2.0</td>
<td>200</td>
</tr>
</tbody>
</table>
Table 3. Mean comparison of morphological characteristics grain yield and its components in wheat cv. Alvand

<table>
<thead>
<tr>
<th>Tillage treatment</th>
<th>Grain/Spike (cm)</th>
<th>Plant Height (cm)</th>
<th>Spike length (cm)</th>
<th>1000 GW (g)</th>
<th>Spike/m²</th>
<th>Grain yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>48 a</td>
<td>84 ab</td>
<td>40.66 a</td>
<td>280 ab</td>
<td>48 a</td>
<td>3823 bc</td>
</tr>
<tr>
<td>A2</td>
<td>47 a</td>
<td>88 a</td>
<td>39.66 b</td>
<td>267 b</td>
<td>47 b</td>
<td>4746 ab</td>
</tr>
<tr>
<td>A3</td>
<td>47.67 a</td>
<td>86a</td>
<td>37 b</td>
<td>364 a</td>
<td>47.67 a</td>
<td>5034 a</td>
</tr>
<tr>
<td>A4</td>
<td>44.33 a</td>
<td>79.33 b</td>
<td>38.66</td>
<td>191.66 b</td>
<td>43.33 a</td>
<td>2903 c</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter(s) are not significantly different at 5% probability level using Duncan's Multiple Range Test.
Table 4. Mean comparison of soil cone index in different depths in two cropping seasons

<table>
<thead>
<tr>
<th>Tillage treatment</th>
<th>Depth (cm)</th>
<th>0-10</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td></td>
<td>1.26 ab</td>
<td>1.83 ab</td>
<td>1.95 ab</td>
<td>1.95 ab</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>1.18 ab</td>
<td>1.65 ab</td>
<td>1.95 a</td>
<td>1.95 a</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>1.1 b</td>
<td>1.44 b</td>
<td>1.65 a</td>
<td>1.65 a</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>1.41 b</td>
<td>1.99 a</td>
<td>2.23 a</td>
<td>2.23 a</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter(s) are not significantly different at 5% probability level using Duncan’s Multiple Range Test.

Effect of different tillage methods on grain yield and its components in wheat cv. Alvand under East Azarbayjan conditions

Salek Zamani¹, A., A. Onnabi Milani² and M. Zabolastani³

ABSTRACT

In order to study the effects of tillage methods on wheat grain and its components an experiment was conducted using randomized complete block design (RCBD) with four treatments including 1-Chisel plow in depth of 5-20 Cm, 2- Moldboard plow in depth of 15-20 Cm, 3- Moldboard plow in depth of 25-30 Cm and 4-control (No tillage) with three replications, in Khosroshahr Research Field Station in two cropping seasons (2004-2006). Tillage treatments were conducted in the same field for two years. First year safflower was grown and in the second year wheat. Data of cone index, grain yield and its components were collected for evaluation and analysis. Results showed that the effect of different tillage methods were not significant for the grain weight, spike length, grain numbers per spike. However, there were significant (P<0.05) differences among different tillage methods for grain yield and plant height. Moldboard plow in depth of 25-30 Cm had the highest effect on grain yield (5034 Kg/ha) and No-tillage had the lowest (2903 Kg/ha). Mold board plow in depth of 25-30 Cm had the least cone index, soil properties, but the highest soil permeability. Among the tillage methods, moldboard plow in depth of of 25-30 Cm compared to the other treatments had greater effect on soil cone index and grain yield.

Key words: Tillage, Wheat, Grain yield, Cone index, Soil property.

Received: February, 2007

¹- Faculty member, Agricultural and Natural Resources Research Center of East Azarbijan. Tabriz, Iran (Corresponding author). E-mail: asalezamani @ yahoo-corn
² and ³- Faculty members, Agricultural and Natural Resources Research Center of East Azarbijan. Tabriz, Iran.