Study of genetic control of resistance to common smut in maize

Common smut

Tip injection

Silking

("Common smut")

\(K1264/1 \times K3304/1 \times K47/2 \)
Ustilago maydis

(Christensen, 1963)

Vozdova, 1973

Odiemah and Kovacs, 1990

Bojanowski, 1969

Renfro, 1983

Agrios, 1988

Smith and White, 1988

Kranz and White, 1988

Shuteff, 1980

Polygenic

Pope and Carter, 1992

Pataky et al., 1995

Finker and Holton, 1957

Finkel and Holton (1957)

Fink and Halton

Corn Common Smut

Ustilago maydis

Jame S. H. R. Shuteff, 1980

Ustilago maydis

Smith and White, 1988

Polygenic
طرف‌گیری که با توجه به منابع به‌سایه‌ای، ارقام برای کشت در هم‌مان بافت‌ها (Christensen, 1963) معمولاً از رقم‌های K3304/1, K47/2, K1264/1 و K47/2/1 که در هر قسمت سی از سایت‌ها (MS) و مقاومت (R) مشخص شده‌اند بود.

رازبایی مقاومت در شرایط مزرعه و کلیه‌نامه‌ها و در نهایت، در شرایطی مزمن و مختلط و به‌مدت (K3304/1) هدف از شاهد است (زمانی و استخران، 1994) و با توجه به وضویت‌های مقاومت به سایه‌های در حال توالی خاص از قبل در یک حساس و دو در لاین مقاوم به‌وجود است.

موفقیت در روش

\[Y = m + \alpha d + \beta h + \alpha^2 i + 2\alpha\beta j + \beta^2 l \]

ارقام برای کشت در هم‌مان بافت‌ها (Christensen, 1963) معمولاً از رقم‌های K3304/1, K47/2, K1264/1 و K47/2/1 که در هر قسمت سی از سایت‌ها (MS) و مقاومت (R) مشخص شده‌اند بود.

رازبایی مقاومت در شرایط مزرعه و کلیه‌نامه‌ها و در نهایت، در شرایطی مزمن و مختلط و به‌مدت (K3304/1) هدف از شاهد است (زمانی و استخران، 1994) و با توجه به وضویت‌های مقاومت به سایه‌های در حال توالی خاص از قبل در یک حساس و دو در لاین مقاوم به‌وجود است.

موفقیت در روش

\[Y = m + \alpha d + \beta h + \alpha^2 i + 2\alpha\beta j + \beta^2 l \]
Jinks, 1982

\[EW = \frac{V_{P1} \times V_{P2} + V_{P1} + V_{P2}}{2} \]

\[H = \frac{V_{P1} - V_{P2}}{V_{P1} + V_{P2}} \]

\[D = V_{P1} - 2 \left(V_{P1} + V_{P2} \right) \]

\[F = \frac{E_{W1} - V_{P1}}{E_{W1} + V_{P1}} \]

\[M = V_{P1} \times V_{P2} + V_{P1} + V_{P2} \]

\[H_{D1} = \left(\frac{V_{P1} - V_{P2}}{V_{P1} + V_{P2}} \right) \]

\[H_{D2} = \left(\frac{V_{P1} \times V_{P2} + V_{P1} + V_{P2}}{2} \right) \]

\[B_{C1} + B_{C2} \]

\[V_{F2} \]

\[V_{F1} \]

\[\text{فصل} \]
Table 1. Analysis of variance of disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K7264/1 × K3304/1-2
K47/2-21 × K3304/1-2
K7264/1 × K47/2-2-1-3-31

**: Significant at 1% of probability level.

**": معنی داری در سطح احتمال 1 درصد

Table 2. Mean disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>Generation</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3.5 ± 2.24</td>
<td></td>
<td>6.43 ± 0.38</td>
<td></td>
<td>4.12 ± 0.82</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>86.46 ± 3.14</td>
<td></td>
<td>85.79 ± 12.83</td>
<td></td>
<td>59.91 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>13.7 ± 6.6</td>
<td></td>
<td>25.34 ± 0.03</td>
<td></td>
<td>11.57 ± 4.32</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>27.97 ± 7.56</td>
<td></td>
<td>28.01 ± 6.31</td>
<td></td>
<td>26.92 ± 5.25</td>
<td></td>
</tr>
<tr>
<td>BC1</td>
<td>14.29 ± 9.6</td>
<td></td>
<td>29.22 ± 0.92</td>
<td></td>
<td>12.95 ± 6.9</td>
<td></td>
</tr>
<tr>
<td>BC2</td>
<td>63.35 ± 19.9</td>
<td></td>
<td>76.18 ± 6.57</td>
<td></td>
<td>37.48 ± 5.12</td>
<td></td>
</tr>
</tbody>
</table>

Cross 2
K47/2-2 × 3304/1-2
K7264/1 × K47/2-2-1-3-31

Cross 3
K47/2-2 × 3304/1-2
K7264/1 × K47/2-2-1-3-31

جهان "بهار" و "فلاور" شدید بیماری در نسل های حاصل از تلاقوی.

Table 1. Analysis of variance of disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K7264/1 × K3304/1-2
K47/2-21 × K3304/1-2
K7264/1 × K47/2-2-1-3-31

**: Significant at 1% of probability level.

**": معنی داری در سطح احتمال 1 درصد

Table 2. Mean disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>Generation</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3.5 ± 2.24</td>
<td></td>
<td>6.43 ± 0.38</td>
<td></td>
<td>4.12 ± 0.82</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>86.46 ± 3.14</td>
<td></td>
<td>85.79 ± 12.83</td>
<td></td>
<td>59.91 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>13.7 ± 6.6</td>
<td></td>
<td>25.34 ± 0.03</td>
<td></td>
<td>11.57 ± 4.32</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>27.97 ± 7.56</td>
<td></td>
<td>28.01 ± 6.31</td>
<td></td>
<td>26.92 ± 5.25</td>
<td></td>
</tr>
<tr>
<td>BC1</td>
<td>14.29 ± 9.6</td>
<td></td>
<td>29.22 ± 0.92</td>
<td></td>
<td>12.95 ± 6.9</td>
<td></td>
</tr>
<tr>
<td>BC2</td>
<td>63.35 ± 19.9</td>
<td></td>
<td>76.18 ± 6.57</td>
<td></td>
<td>37.48 ± 5.12</td>
<td></td>
</tr>
</tbody>
</table>

Cross 2
K47/2-2 × 3304/1-2
K7264/1 × K47/2-2-1-3-31

Cross 3
K47/2-2 × 3304/1-2
K7264/1 × K47/2-2-1-3-31

جهان "بهار" و "فلاور" شدید بیماری در نسل های حاصل از تلاقوی.

Table 1. Analysis of variance of disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

K7264/1 × K3304/1-2
K47/2-21 × K3304/1-2
K7264/1 × K47/2-2-1-3-31

**: Significant at 1% of probability level.

**": معنی داری در سطح احتمال 1 درصد

Table 2. Mean disease severity in different generations of three crosses

<table>
<thead>
<tr>
<th>Generation</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
<th>Takaffi</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>3.5 ± 2.24</td>
<td></td>
<td>6.43 ± 0.38</td>
<td></td>
<td>4.12 ± 0.82</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>86.46 ± 3.14</td>
<td></td>
<td>85.79 ± 12.83</td>
<td></td>
<td>59.91 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>13.7 ± 6.6</td>
<td></td>
<td>25.34 ± 0.03</td>
<td></td>
<td>11.57 ± 4.32</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>27.97 ± 7.56</td>
<td></td>
<td>28.01 ± 6.31</td>
<td></td>
<td>26.92 ± 5.25</td>
<td></td>
</tr>
<tr>
<td>BC1</td>
<td>14.29 ± 9.6</td>
<td></td>
<td>29.22 ± 0.92</td>
<td></td>
<td>12.95 ± 6.9</td>
<td></td>
</tr>
<tr>
<td>BC2</td>
<td>63.35 ± 19.9</td>
<td></td>
<td>76.18 ± 6.57</td>
<td></td>
<td>37.48 ± 5.12</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Degree of dominance, and heritability in maize crosses

<table>
<thead>
<tr>
<th>Cross</th>
<th>h²</th>
<th>h/d</th>
<th>²h/ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.71</td>
<td>-1.68</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>0.68</td>
<td>0.65</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>0.9</td>
<td>1.14</td>
<td>0.69</td>
</tr>
</tbody>
</table>

* For h²**bs**: 1, 2, 3, 4 and 5 see materials and methods.

Table 5. The components of variation of diseases severity in six different generations developed from maize crosses

<table>
<thead>
<tr>
<th>Cross</th>
<th>D</th>
<th>H</th>
<th>F</th>
<th>Ew</th>
<th>F/(D×H)**1/2</th>
<th>(H/D)**1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>311.7</td>
<td>344</td>
<td>-344.4</td>
<td>66.7</td>
<td>1.02</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>274.4</td>
<td>144.4</td>
<td>-154.3</td>
<td>92.8</td>
<td>0.77</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>321.8</td>
<td>204</td>
<td>-153.1</td>
<td>20.7</td>
<td>0.59</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Ew: Not heritable (environmental) variation, D: Additive variation, H: Dominance variation, F: Correlation of h and d over loci.
Fig. 2. Distribution of F2 generation for percent of infection to common smut in different crosses of maize.
ارزومن نسبت به ذکر از ترکان ایستاگی‌ای محلولی اف‌اچ‌ای و افزایش محاسبه به شکل‌های افزایشی و غیرنظامی (Mather and Jinks, 1982). می‌بوده‌ای در پنجمه، پنج شاخه برگ‌های فرعی الهام به سه شاخه ترکان بی‌شک بررسی شده‌اند. مانند که در اجزاء مدل‌های مورد استفاده ماهی‌های علاوه بر اثر افزایشی غیرنظامی، اثر ایستاگی و وجود دانکن که بی‌شک است که هر دو به علاوه افزایشی و غیرنظامی منجر به ورود مقاومت به شکل‌های افزایشی و غیرنظامی می‌گردد. در حالی که رویار و راکر (Bojanowski, 1969) و (Renfro, 1983) اثر افزایشی و غیرنظامی از کنار ایستاگی را در کنار ایستاگی اعلام کرده‌اند. مطابقت داده‌های این تحقیق بودند مقاومت به بیماری در نتیجه این آزمایش مشاهده شده‌اند. که سه‌گزایی ها، در هر یک‌ت‌ت این افراد یا از افزایشی و غیرنظامی زنی‌کی در مدل‌های مورد گزارش دادن داری‌ها، دلار و اثر ایستاگی که دارای اهمیت بودند. مقاومت پیچ زنی‌کی برای مقاومت به‌یک‌ت‌ت توسط پاتکی و همکاران (Pataky et al., 1995) و یکپارتر (Singh et al., 1988) یا باید از دو تراکم بی‌شک بود. این نوع از مقاله‌های مشابه از سوی دانشگاه کرک و اثرات م찰ی‌الغر (Vozdova, 1973) با اهمیت ایستاگی‌ای در کنار افزایشی و غیرنظامی در اعلام کرده است. بسیاری با مشاهده است که فرض کردن زنی‌کی بی‌شک صفت را کنترل می‌کند و در حقیقت عمل زنی‌کی در نزده توانایی به کنترل فاکتورهای عواملی که به بی‌شک اثر مقابلی دانگ افزایشی می‌باشد.

85
روش‌های زیست‌کودکی کمی شناسایی می‌کردند و سپس به‌رغم استفاده در حال‌های مختلف پژوهشی مناسب‌تر بوده است (رشیدی، 1985). در اینجا همچنین این نوع از ابزارها توضیح داده شده است و سپس در زیر مجموعه‌ای از مطالعات انجام می‌گیرد.

در یکی از پژوهش‌های تحقیقاتی، که در زمینه‌های مختلفی انجام شده است، مشاهده شد که از مطالعات مختلف در زمینه‌های مختلف، محققان به‌طور معمول و حاوی‌پذیری روی سطح سفید، مصرف‌های بین‌المللی به‌طور معمول انجام می‌دهند، بنابراین مکان‌ها و غیره در تکنیک‌های مختلف مورد استفاده قرار می‌گیرند. به‌طوری‌که در یکی از آزمایشات، نشان داده شد که در شرایط خاصی، می‌توان از این آزمایشات برای بررسی و کنترل پاسخ‌های مختلف استفاده کرد. هدف از این آزمایشات، احتمالاً مصرف‌های روندها و سایر فعالیت‌های بی‌سیاره بوده است.

روش‌های اصلاحی مبتنی بر انتخاب و هم‌اکنون، در زمینه‌های مختلفی انجام می‌گیرند. از این رو، در یکی از آزمایشات، نشان داده شد که در شرایط خاصی، می‌توان از این آزمایشات برای بررسی و کنترل پاسخ‌های مختلف استفاده کرد. هدف از این آزمایشات، احتمالاً مصرف‌های روندها و سایر فعالیت‌های بی‌سیاره بوده است.

در نهایت، برای اطمینان از این موضوع، نظرات مختلفی ارائه گردیده و در زمینه‌های مختلفی انجام می‌گیرند. از این رو، در یکی از آزمایشات، نشان داده شد که در شرایط خاصی، می‌توان از این آزمایشات برای بررسی و کنترل پاسخ‌های مختلف استفاده کرد. هدف از این آزمایشات، احتمالاً مصرف‌های روندها و سایر فعالیت‌های بی‌سیاره بوده است.
"بررسی کنترل زننیکی مقاومت به سایه‌کشی ب.."

کمی فقط بر اساس حضور نوع پاتوسته در جمعه های در حال تفرق معتبر نمی‌باشد اما در F_2 برای شدت سایه‌کش معمول مشاهده شد و لذا می‌توان کمیت تغییرات شامل اشرار زن و اثرات مشابه زننیکی از طرف دیگر نتیجه‌گیری کرد که ترکیبی متفاوت نرم‌ال برای آن اشکال ممکن است به علت حضور غیرهای اپی‌ستازی ممکن است. فقدان نوع پاتوسته در جمعه های در حال تفرق تلاش‌ها ممکن است به علت تفرق‌های چندنامه زننیکی، توارث F_2 یا F_3 به دو مرحله. این نوع پاتوسته ممکن است حتی بتواند مراحل کنترل در ناسرقله به آنها اثرات ممکن شک و باشد. هر چند که دانستن توارث

References

منابع مورد استفاده

Axworthy, M. 1963. مواردی از غلات. انتشارات دانشگاه تهران.

622pp

Lande, R. 1981. The minimum number of genes contributing to quantitative variation between and within population. Genetics. 99: 541-553

Renfro, B. L. 1983. Genetic Resistance to Disease in Maize. CIMMYT, Mexico DF., Mexico. 74pp.

Study of genetic control of resistance to common smut in maize

Ghaed Rahmat¹, M., R. Choukan², B. Seyahsar³ and M. Zamani⁴

ABSTRACT

In order to study the genetic control of resistance to common smut in maize, two resistant inbred lines, K1264/1 and K47/2-2-21 and two susceptible inbred lines, K3304/1-2 and K47/2-2-1-3-3-1, were crossed as K1264/1 × K3304/1-2, K47/2-2-21 × K3304/1-2 and K1264/1 × K47/2-2-1-3-3-1. The F1, F2, BC1 and BC2 progenies were produced and evaluated along with parents using randomized complete block design with three replications. All generations were artificially inoculated with spordia of Ustilago maydis suspension. Inoculation was carried out 7-10 days after silking through injection of 3 ml of 10⁶ spores/ml fungal suspension, using tip injection method. At maturity, disease severity was determined based on ears infection and analysed according to generation means analysis method for three crosses. Joint scaling test showed that the presence of additive, dominance and epistasis effects, especially additive × additive and dominance × dominance type, and in lesser extent, additive × dominance, in genetic control of resistance to maize common smut. Average broad and narrow-sense heritability based on three crosses data were estimated 80.3 and 57.3, respectively.

Key words: Maize, Common smut, Generation means analysis, Epistasis, Dominance, Additive.

Received: August, 2007.
1- Former MSc. Student, Faculty of Agriculture, the University of Zabol.
2- Assistant Prof., Seed and Plant Improvement Institute, Karaj, Iran (Corresponding author)
3- Assistant Prof., Faculty of Agriculture, The University of Zabol.
4- Faculty member, Seed and Plant Improvement Institute, Karaj, Iran.