Effect of planting pattern and plant density on grain yield and its components in apetalous and petalled rapeseed (Brassica napus L.) cultivars

Abdulazim Awwoni Dohi, Moshood Afshehni, N. S. Zadehali and M. Rehui

چکیده

 ذوونی دولیجی، M. اصفهانی، J. سیمی زاده لاهیجی و M. رحیمی: اثر آراشی کاشت و تراکم بر عملکرد و اجزای عملکرد دانه دو رقم کلزا

کلزا گدار و بدون کلزا

صفت بدون کلزا کهی از صفات مرحلوزک هیئ در کلزا است که به دلیل نفوذ بهتر نور به داخل مداخته‌ی هی و پرورش‌داری کارآمدتر از تا خورشید، کشت در تراکم‌های بالاتر و در تری‌های افزایش عملکرد در واحد سطح را همراه دارد. به منظور بررسی اثر تراکم و آراش کاشت بر عملکرد و اجزای عملکرد دانه در رقم کلزا گدار و بدون کلزا ازمایشی در سال مزرعه 1368/8689 در بخش کشاورزی دانشگاه کرمان در دو تراکم بلند به اجرا گذاشته شد. طرح آزمایشی مورد استفاده در این آزمایش با طرح یک‌پایه پایک فاکتورهای کل میزان رسیده در سه تکرار بود که در آراش کاشت مربعی و مستقل به عناوین کرت اصلی و دو رقم کلزا گدار 401 وزن گدازه و Hylite 330 و تراکم‌های ۴/۴ و ۴/۷ در۴ موره کفک را در طرح‌های ۱/۳۳ و ۱/۴۴۳۶ در ۳۷/۷۶ و ۷۱/۵۸۳۲ از گلدوانه سایر کشت‌ها بالاتر در رقم بالاتر کلزا گدار و غیره به دست آمد و ۲/۳۳۱۶ نیز بالاتر در رقم بالاتر کلزا گدار و غیره به دست آمد. برای یک کشت مراکز می‌تواند

DOR: 20.1001.1.15625540.1386.9.1.5.1

1 / 17

[Downloaded from agrobreedjournal.ir on 2022-01-15]
1- Canopy Architecture
2- Apetalous flowers
3- Interplant competition
4- Intraplant competition
کترل علی‌های هرز استفاده شده و بلافاصله بعد از این
دی‌سک ذاکه شده باین باعث واحد‌های ازمایشی
کرده‌شد که در معیاری ترکم، نور
عاب Destiny از میانی، عدم جریان‌ها در داخل
اندازه‌گیری و افزایش رطوبت نسبی در خروج افکتم در
مزرعه، در برای می‌مشی احتمال خواهد
امیدراید، با بودن حسنین
پیروی اثر ترکم و ارایش کاشت بر خصوصیات زراعی
و کیفی کازیان زستانه گزارش کرده که عملکرد دانه
می‌باشد، یک رقم از ارایش کاشت قرار گرفتن ویلی
سرطح ترکم بر عملکرد بی‌اثر بود. این
واکنش را می‌توان به قدرت ترکم بر بایلای کلزا
نسبت داد. نسبت آن برای افزارنی عملکرد در ترکم‌های شده
زادرد هدف از اجرای همان‌هایش اثرات تراکم
آن برای ارایش عملکرد ترکم‌های بی‌اثری‌که و
کازی‌های مصرف تانش در دو رقم کازری کلرگردان و
بدون کلرگرد بوید.

مواد و روش

طرح پایه یا بلوک‌های کامل تصادفی با [2] تکرار طی
فوتونیک [1] با موجودیت کنترل واقع در شرایط زیستی و
قرار دادن خاک مولفه دارای بافت سلیقه‌ای
50% I% = (1- 1/10)*100

1- Photosynthetically Active Radiation 2- Light Interception
تعداد شاخه فرعی در گیاه

۱- Swathing

مجله، جلد نهم ۱، ۶۸۳۱

رضا نوروزی و تارکم ژاکار یکینه بر اساس اطلاعات هواشناختی.

تعداد سادات افتایی واقعی (E) ساس

شماره انجام.

1- Swathing
"نمر آواش کاشت و تراکم بونه بر..."
"نم آراش کاشت و تراکم بونه بر..."
توجه به پیشنهاد انجام تحقیق‌های جدیدی از جهت افزایش عملکرد و نوسازی مضمون مقاله توسط [1].
روریته، ۱۹۸۱، "...
٠٧
یـ ﺗﺮﺑـﺪﻟ ﻴﻴﻦ
یـ ٧
یـ ٥
یـ ٤
یـ ٣
یـ ٢
یـ ١
یـ ۰
به نظر

رودینکروک، ۲۰۰۰)

(ورودینکروک، ۲۰۰۰)
وجود داشت. در این مطالعه، روان درد و ناراحتی، و نیز سطح قفسه‌های روغن کاهش گرفت. همچنین نتایج نشان داد که در مطالعات پیشین، افراد را به کاهش درصد روغن دانه هدایت می‌کردند. در این مطالعه، محققان به تعدادی از انواع مختلف روغن دانه در دسته موارد مختلفی برخورد کردند تا آمار شرایط روغن دانه را بهبود بیابند.

برامی (Hassan et al., 1996) و (Leach et al., 1999) نشان دادند که کاهش درصد روغن دانه به طور بافتی به طور کلی باعث کاهش درصد روغن دانه می‌شود. در این مطالعه، همچنین به تعدادی از انواع مختلف روغن دانه در دسته موارد مختلفی برخورد کردند تا آمار شرایط روغن دانه را بهبود بیابند.
"\[\text{در تراکم‌های کمتر تعداد خوراک‌ها، تعداد شاخص‌ها و وزن دانه در اینه است} \]

\[\text{ولی چون عملکرد دانه در واحد سطح به} \]

\[\text{طرور نسبی کمتر می‌باشد. باید عملکرد دانه نسبت به} \]

\[\text{تراکم‌های ذکر در پایین‌ترین سطح قرار می‌گیرد.} \]

\[\text{حقل از آن آزمایش در رابطه با عملکرد} \]

\[\text{دانه با} \text{می‌باشد. از محاسبه مطلوب در} \]

\[\text{رندی و همکاران (Leach et al., 1999) گزارش کرده که در} \]

\[\text{تراکم‌های} \text{کاست تفاوت} \text{داری داشته و تراکم‌های مطلوب از حیث این صفت برتری} \]

\[\text{داشتند.} \]

\[\text{شاخص برداشت} \]

\[\text{و} \text{در همان داد که} \text{ان در رقم} \]

\[\text{کلیک که در و بدون کلیک از نظر شاخص برداشت اختلاف معنی‌داری وجود نداشت} \]

\[\text{اما رقم بدون کلیک شاخص برداشت بهتری نسبت به رقم} \]

\[\text{کلیک کننده درست (جدول)} \text{در آن تراکم‌های مورد} \]

\[\text{دررسی از نظر شاخص برداشت اختلاف معنی‌داری در} \]

\[\text{درصد وجود داشت (جدول)} \text{درصد و بدون کلیک کننده در استاندارد} \]

\[\text{شکست در انتقال مواد فوسفورزی از} \text{مصرف و ضرر} \]

\[\text{و کارآی استفاده از} \text{در تراکم} \text{ته در} \]

\[\text{متغیرهای دارای اثر تراکم‌های ذکر است} \]

\[\text{ابن تراکم} \text{شاخص برداشت بالاتری برخوردار بود.} \]

\[\text{در آزمایش‌های حاصل از این اثرات و همکاران} \text{مطابق با داستان.} \]

\[\text{دلاکارش (Rao et al., 1991) کردند که در} \text{تراکم} \text{شاخص برداشت در رقم} \]

\[\text{بود بدون کلیک که به} \text{درصد و} \text{درصد بود به} \text{که نشان می‌دهد شاخص برداشت نبود.} \]

\[\text{کلیک که در و بدون کلیک که انجام داده بودند، عملکرد} \]

\[\text{بود در رقم کلیک که آبیاری نشده،} \text{که بر اساس کلیک که به} \]

\[\text{گل‌کرم در هکار و برای رقم بدون کلیک که به} \]

\[\text{کلیک کرم در هکار اعلام} \text{کردند. امکان‌رسید (Rao)} \text{کرار که در} \]

\[\text{تراکم‌های} \text{که از نظر صفت عملکرد بیلوروزی کن تفاوت معنی‌داری وجود داشت، به طوری که عملکرد} \]

\[\text{بیلوروزی} \text{را برای تراکم‌های} \text{که در متریک‌ها} \text{در متریک‌های} \text{در هکار اعلام نمود که} \text{مارک‌گیری در حد مطلوب،} \]

\[\text{عملکرد بیلوروزی حداقل و در تراکم مطلوب، عملکرد} \]

\[\text{بیلوروزی حداقل بود.} \]

\[\text{عملکرد دانه} \text{حاصل از تجزیه و ارائه داده‌ها نشان داد که} \text{ن در رقم کلیک و تراکم‌های بوته از نظر عملکرد دانه اختلاف معنی‌داری در سطح} \text{درصد وجود داشت (جدول)} \text{شکست در که رقم بدون کلیک کننده در استاندارد} \]

\[\text{کرم داد که رقم بدون} \text{بود در متریک‌ها مورد بررسی،} \text{تراکم} \text{توت در متریک‌ها مورد بررسی از نظر عملکرد دانه نسبت به سایر تراکم‌ها از که برتری نسبی برخوردار بود (جدول و) علت برتری رقم} \text{بودن کلیک را می‌توان مطلوب بودن ان از نظر} \]

\[\text{و} \text{چون بودن تعداد خوراکی در} \text{تعداد شاخه فرعی در} \text{و طول خوراکی} \text{دانست و} \text{علت برتری تراکم} \text{بوته در متریک‌ها نسبت به سایر تراکم‌ها از که برتری نسبی برخوردار بود (جدول و) علت برتری رقم} \text{بودن کلیک را می‌توان مطلوب بودن ان از نظر} \]

\[\text{و} \text{بودن تعداد خوراکی در} \text{تعداد شاخه فرعی در} \text{و طول خوراکی} \text{دانست و} \text{علت برتری تراکم} \text{بوته در متریک‌ها نسبت به سایر تراکم‌ها از که برتری نسبی برخوردار بود (جدول و) علت برتری رقم} \text{بودن کلیک را می‌توان مطلوب بودن ان از نظر} \]

\[\text{و} \text{بودن تعداد خوراکی در} \text{تعداد شاخه فرعی در} \text{و طول خوراکی} \text{دانست و} \text{علت برتری تراکم} \text{بوته در متریک‌ها نسبت به سایر تراکم‌ها از که برتری نسبی برخوردار بود (جدول و) علت برتری رقم} \text{بودن کلیک را می‌توان مطلوب بودن ان از نظر} \]}
Table 5. Mean comparison of radiation use efficiency in apetalous and petalled rapeseed cultivars in different plant densities

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Radiation use efficiency (gmj⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plant density (Plant m⁻²)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyola 401</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>133</td>
</tr>
<tr>
<td>Hylite 201</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>133</td>
</tr>
</tbody>
</table>

Means, each column and treatment, followed by the same letter, are not significantly different at 5% probability level using Duncan's Multiple Range Test.
سیاسگزاري

اعداد اجراي اين تحقيق از محل ميل شود.

اعتبارات معاونت پژوهشی دانشگاه کیلان

References

منابع مورد استفاده

آثاری، ح. ر. اخراج، د. ع. دهه و ع. دهه. ۱۳۸۵. ردیابی کناره‌نشات و نشاط‌کناره نشاط‌کناره گزارشی. تهران، ۱۳۸۵.

امیدی، ح. ز. طهماسبی، سروستا و ع. مردان و س. ع. م. مدرس گالوی. ارزیابی شاخص‌های خاک‌نوردی و فواصل رشدی بر عملکرد دانه و درصد روحانی در سم‌کاکی. مجله علوم زراعی ایران. ۱۳۸۵. شماره ۳، ۱۳۸۵.

امیدی، ح. ز. طهماسبی، سروستا و ع. مردان و س. ع. م. مدرس گالوی. ارزیابی شاخص‌های خاک‌نوردی و فواصل رشدی بر عملکرد دانه و درصد روحانی در سم‌کاکی. مجله علوم زراعی ایران. ۱۳۸۵. شماره ۳، ۱۳۸۵.

بیشی، ع. م. کوچکی. ۱۳۸۵. کارشناسی ارشد. دانشگاه کشاورزی دانشگاه کیلان. ۱۳۸۵. شماره ۳، ۱۳۸۵.

یوزفی، ع. م. کوچکی. ۱۳۸۵. کارشناسی ارشد. دانشگاه کشاورزی دانشگاه کیلان. ۱۳۸۵. شماره ۳، ۱۳۸۵.

زمانی، ع. م. کوچکی. ۱۳۸۵. کارشناسی ارشد. دانشگاه کشاورزی دانشگاه کیلان. ۱۳۸۵. شماره ۳، ۱۳۸۵.

زمانی، ع. م. کوچکی. ۱۳۸۵. کارشناسی ارشد. دانشگاه کشاورزی دانشگاه کیلان. ۱۳۸۵. شماره ۳، ۱۳۸۵.

Effect of planting pattern and plant density on grain yield and its components of apetalous and petalled rapeseed (*Brassica napus* L.) cultivars

Ozoni Davaji¹, A., M. Esfahani², H. Sami Zadeh Lahiji³ and M. Rabiee⁴

ABSTRACT

Apetalous flowers is an important morphological characteristic in rapeseed (*Brassica napus* L.), which cause response to higher planting population, more light transmission in canopy and radiation use efficiency, higher grain yield. In order to evaluate the effects of plant density and planting pattern on grain yield, yield components of apetalous and petalled rapeseed, a field experiment was conducted in Rice Research Institute of Iran, in 2005-2006 cropping season. The experimental design was arranged in a split plot factorial in a randomized complete block design with three replications. Planting pattern (Rectangular and Square) as the main plots and two rapeseed cultivars (petalled = Hyola 401 and apetalous = Hylite 201) and plant density (33, 67 and 133 plants per square meter) as subplots, respectively. The number of secondary branch per plant, plant height, number of siliques per plant, number of seeds per silique, silique length, oil percentage, thousand grain weight, harvest index, biological yield and grain yield were measured. Results showed that there were significant differences between treatments in measured traits. The average grain yield in apetalous cultivar was 14.6% higher than the petalled cultivar (3441.95 and 2938.06 Kg/ha, respectively). Plant density of 67 plants per unit area was determined to be the optimum plant density for two cultivars (4870 and 4290 Kg/ha respectively). Grain yield and number of siliques per plant in apetalous rapeseed was significantly higher than the petalled rapeseed (10 and 12%, respectively). This superiority was more evident at higher density (133 plants per unit area) i. e. 17.5 and 15.5%, respectively), indicating that apetalous cultivar has higher capability for higher plant population. In spite of non significant differences between harvest indices, right harvest indices of 4.5 and 11% in apetalous rapeseed in 67 and 133 plant densities, showed its higher capability for assimilate transport to grain. It seems that the main reason of superiority of apetalous rapeseed cultivar may be due to higher radiation use efficiency (RUE) compared to petalled cultivar (2.38 vs. 2.16 g.MJ⁻¹, respectively).

Key words: Apetaluos, Petalled, Rapeseed (*Brassica napus* L.), Planting pattern, Plant density, Radiation use efficiency (RUE), Grain yield, Grain yield components.

Received: June, 2007
1- Former MSc. Student of Agronomy, Faculty of Agricultural Sciences, The University of Guilan, Rasht, Iran.
2- Assistant Prof., Faculty of Agricultural Science, The University of Guilan, Rasht, Iran. (Corresponding author)
3- Assistant Prof., Faculty of Agricultural Science, The University of Guilan, Rasht, Iran.
4- Researcher, Rice Research Institute of Iran, Rasht, Iran.