Screening of rice genotypes for tolerance to low temperature - using chlorophyll fluorescence

چکیده

حسیب مقدمه و می‌توان گفت که برای تعیین دمای پایین‌تری که برای تولید فسفر را به دست می‌دهند، نیاز به استفاده از فلورسنس کلروفیل مجدد می‌شود.

واژه‌های کلیدی: دمای پایین‌تر، فلورسنس کلروفیل، عدد کلروفیل متر گربال کردن.

۱۴
فقط نتایج انجام شده و اثبات این اصل می‌باشد که در حیات زمینی که به‌جهت انواع مختلفی از آب و هوای متفاوت به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)

در میزان زیرشتاب‌گیری در حیات زمینی که به‌طور عمدی یا غیر عمدی در هرج و مرج برخورد کرده‌اند، نیازی نیست که به‌طور مستقیم برای کاهش حساسیت و سرمایه‌گذاری نشود.

(Allen and Ort, 2001)}
μιαρά | مفيد برای تعیین میزان (ETR) | میزان انقباض الکترون (EPR) | کمیت ای و بسته دندون روزنه
Adams et al., 1995; Oquist and Hunner, 1991; Adams et al., 1990, (۱)

۱- Electron transport rate

1- Electron transport rate
مواد و روش

در این آزمایش که در پژوهشگاه بیوشکوهی کتراوری-کرج در سال ۱۳۸۰ انجام شد، زنوتیپ‌های (۱) ژنتیکی و (۲) ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی، زاده، و مادرگاسکاری انتخاب و آزمایش کردند. این انتخاب توسط پژوهشگران انجام شده است. گروه اول شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد. گروه دوم شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد. گروه اول شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد. گروه دوم شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد. گروه اول شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد. گروه دوم شامل یک ژئوژن ژئوژن‌های آژرنیکی، کره شمالی، کره جنوبی عضو به پژوهشگاه در سال ۱۳۸۰ انجام شد.
Table 1. Name and origin of rice genotypes

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Name</th>
<th>Origin</th>
<th>Code</th>
<th>Name</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IRCTN1</td>
<td>Turkey</td>
<td></td>
<td>IRCTN2</td>
<td>CHINA 1039</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IRCTN3</td>
<td>Turkey</td>
<td></td>
<td>IRCTN4</td>
<td>Pj-2(NSICRC 104)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IRCTN5</td>
<td>Turkey</td>
<td></td>
<td>IRCTN6</td>
<td>PSB RC44(IR9468-B-B-3-2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IRCTN7</td>
<td>Turkey</td>
<td></td>
<td>IRCTN8</td>
<td>PSB RC92(IR9202-25-1-3)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IRCTN9</td>
<td>Turkey</td>
<td></td>
<td>IRCTN10</td>
<td>K39-96-1-1-1-2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IRCTN11</td>
<td>Turkey</td>
<td></td>
<td>IRCTN12</td>
<td>Anbori ghermez</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>IRCTN13</td>
<td>Turkey</td>
<td></td>
<td>IRCTN14</td>
<td>Rasmi</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IRCTN15</td>
<td>Turkey</td>
<td></td>
<td>IRCTN16</td>
<td>Chaparsar 5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>IRCTN17</td>
<td>N-Korea</td>
<td></td>
<td>IRCTN18</td>
<td>Fajer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>IRCTN19</td>
<td>N-Korea</td>
<td></td>
<td>IRCTN20</td>
<td>Hovaizeh</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IRCTN21</td>
<td>Korea</td>
<td></td>
<td>IRCTN22</td>
<td>Amol3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IRCTN23</td>
<td>China</td>
<td></td>
<td>IRCTN24</td>
<td>Chaparsar Dailamani</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>IRCTN25</td>
<td>IRRI</td>
<td></td>
<td>IRCTN26</td>
<td>Tarom domsiah</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>IRCTN27</td>
<td>IRRI</td>
<td></td>
<td>IRCTN28</td>
<td>Nemat</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>IRCTN29</td>
<td>IRRI</td>
<td></td>
<td>IRCTN30</td>
<td>Binam Tabriz</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>IRCTN31</td>
<td>India</td>
<td></td>
<td>IRCTN32</td>
<td>Sari Chilik</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>IRCTN33</td>
<td>IRRI</td>
<td></td>
<td>IRCTN34</td>
<td>Hashemi</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>IRCTN35</td>
<td>IRRI</td>
<td></td>
<td>IRCTN36</td>
<td>Sahel</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IRCTN37</td>
<td>IRRI</td>
<td></td>
<td>IRCTN38</td>
<td>Onda</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IRCTN39</td>
<td>IRRI</td>
<td></td>
<td>IRCTN40</td>
<td>Ghermez Sadri</td>
<td></td>
</tr>
</tbody>
</table>

References: [qN](https://www.w3.org/2000/08/qname), [qP](https://www.w3.org/2000/08/qp), [ETR](https://www.w3.org/2000/08/etr), [PAM](https://www.w3.org/2000/08/pam)
مقدار Fm در شرایط تنفس کمترین مقدار SPAD-502 می‌باشد.

به همچنین نشانگر عامل کوانتومی فتوسیستم (Φ_{PSII}) دو در شرایط روشنایی بوده و تغییری از کاراپی گذب نور با این دستگاه فتوسیستم دو (PSII) (انحیاء گیون A) است در این زمانی در سطوح اختلاف معنی‌داری نشان داد (جدول 3). در مقادیر این به معنی داری بیشتر از شرایط پایه (جدول 4) و در همین تیمار مقادیر بیشتر از کشور دارای معنی‌داری (Φ_{PSII}) کمتری‌تر از معنی‌داری در رشته ایرانی ساری. Φ_{PSII} بود در تنست سرمایش میزان Φ_{PSII} از میزان Φ_{PSII} کمتری‌تر آن IRRI به میزان Φ_{PSII} مربوط به Φ_{PSII} IRRI به میزان Φ_{PSII} دیگر مصداق در ارقام چندی خوشنویسی، هزینه‌های ندا مشاهده کرده. در شرایط تنی کمترین الکترون که عفونت سرعت انتقال الکترون (ETR) بر حسب میکرومول فوتوسیستم بر متبرک در ثانیه (ϕ) صورت مطلق از فتوسیستم دو Φ_{PSII} نشان داد سطوح فاکتور اصلی و فرایند این Φ_{PSII} قد در اختلاف معنی‌داری با یکدیگر بودن (جدول 4). در شرایط Φ_{PSII} مقدار ان به طور معنی‌داری بیشتر از شرایط Φ_{PSII} بود (جدول 4). بیشترین و کمترین مقدار ان در شاهد مربوط به Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI. و در تیمار تنی، Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI. و در تیمار تنی، Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI و Φ_{PSII} IRRI.
Table 2. Frequently used chlrophyll fluorescence parameters and their equations including Φ_{PSII}, qP, Fv/ Fm and qN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_{PSII}</td>
<td>(Fm′ - Ft)/ Fm′</td>
</tr>
<tr>
<td>qP</td>
<td>(Fm′ - Ft)/(Fm′ - F0)</td>
</tr>
<tr>
<td>Fv/ Fm′</td>
<td>(Fm - F0)/ Fm</td>
</tr>
<tr>
<td>qN</td>
<td>Fm: Fv/ Fm′</td>
</tr>
</tbody>
</table>

Table 3. Summary of analysis variance for chlrophyll fluorescence as well as SPAD value and vigor in rice genotypes under low temperature treatments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>df</th>
<th>SOV</th>
<th>Mean squares</th>
<th>F</th>
<th>Probability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigor</td>
<td>6</td>
<td>2</td>
<td>987.7**</td>
<td>2.76**</td>
<td>**: Significant at 1% Probability level</td>
</tr>
<tr>
<td>SPAD</td>
<td></td>
<td>2</td>
<td>2375.8**</td>
<td>0.047</td>
<td>ns: Non-significant</td>
</tr>
<tr>
<td>qP</td>
<td>6</td>
<td>3</td>
<td>0.047**</td>
<td>0.084</td>
<td>**: Significant at 1% Probability level</td>
</tr>
<tr>
<td>qN</td>
<td></td>
<td>6</td>
<td>0.047**</td>
<td>0.019**</td>
<td>**: Significant at 1% Probability level</td>
</tr>
<tr>
<td>ETR</td>
<td>6</td>
<td>1</td>
<td>2.67**</td>
<td>0.011</td>
<td>**: Significant at 1% Probability level</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td></td>
<td>6</td>
<td>0.007**</td>
<td>0.003</td>
<td>**: Significant at 1% Probability level</td>
</tr>
</tbody>
</table>

- **: Significant at 1% Probability level.
- ns: Non-significant.
Table 4. Means of chlorophyll fluorescence attributes, SPAD value and vigour in rice genotypes under control (N) and low temperature (S) conditions

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Fm:Fv</th>
<th>ΦPSII</th>
<th>ETR</th>
<th>qN</th>
<th>qP</th>
<th>SPAD</th>
<th>Vigor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>0.78</td>
<td>0.21</td>
<td>0.37</td>
<td>0.25</td>
<td>37.2</td>
<td>25.5</td>
<td>0.59</td>
</tr>
<tr>
<td>2</td>
<td>0.81</td>
<td>0.23</td>
<td>0.39</td>
<td>0.24</td>
<td>38.5</td>
<td>24.2</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>0.22</td>
<td>0.37</td>
<td>0.30</td>
<td>36.7</td>
<td>29.4</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>0.79</td>
<td>0.19</td>
<td>0.35</td>
<td>0.23</td>
<td>34.0</td>
<td>23.3</td>
<td>0.53</td>
</tr>
<tr>
<td>5</td>
<td>0.80</td>
<td>0.28</td>
<td>0.44</td>
<td>0.20</td>
<td>43.1</td>
<td>19.9</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>0.79</td>
<td>0.20</td>
<td>0.47</td>
<td>0.21</td>
<td>46.7</td>
<td>20.7</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>0.79</td>
<td>0.32</td>
<td>0.46</td>
<td>0.23</td>
<td>46.0</td>
<td>23.5</td>
<td>0.42</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>0.30</td>
<td>0.45</td>
<td>0.25</td>
<td>43.8</td>
<td>25.4</td>
<td>0.50</td>
</tr>
<tr>
<td>9</td>
<td>0.79</td>
<td>0.23</td>
<td>0.39</td>
<td>0.23</td>
<td>38.3</td>
<td>24.1</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.80</td>
<td>0.30</td>
<td>0.47</td>
<td>0.23</td>
<td>45.9</td>
<td>24.6</td>
<td>0.50</td>
</tr>
<tr>
<td>11</td>
<td>0.80</td>
<td>0.41</td>
<td>0.46</td>
<td>0.28</td>
<td>44.9</td>
<td>19.6</td>
<td>0.55</td>
</tr>
<tr>
<td>12</td>
<td>0.80</td>
<td>0.31</td>
<td>0.47</td>
<td>0.18</td>
<td>46.3</td>
<td>19.2</td>
<td>0.55</td>
</tr>
<tr>
<td>13</td>
<td>0.78</td>
<td>0.50</td>
<td>0.46</td>
<td>0.27</td>
<td>44.8</td>
<td>22.7</td>
<td>0.47</td>
</tr>
<tr>
<td>14</td>
<td>0.80</td>
<td>0.21</td>
<td>0.44</td>
<td>0.20</td>
<td>43.2</td>
<td>20.0</td>
<td>0.55</td>
</tr>
<tr>
<td>15</td>
<td>0.79</td>
<td>0.30</td>
<td>0.41</td>
<td>0.23</td>
<td>39.1</td>
<td>22.3</td>
<td>0.51</td>
</tr>
<tr>
<td>16</td>
<td>0.78</td>
<td>0.19</td>
<td>0.39</td>
<td>0.25</td>
<td>38.3</td>
<td>26.7</td>
<td>0.50</td>
</tr>
<tr>
<td>17</td>
<td>0.78</td>
<td>0.23</td>
<td>0.38</td>
<td>0.19</td>
<td>36.3</td>
<td>19.9</td>
<td>0.51</td>
</tr>
<tr>
<td>18</td>
<td>0.79</td>
<td>0.34</td>
<td>0.45</td>
<td>0.24</td>
<td>42.7</td>
<td>25.4</td>
<td>0.46</td>
</tr>
<tr>
<td>19</td>
<td>0.78</td>
<td>0.51</td>
<td>0.47</td>
<td>0.24</td>
<td>45.4</td>
<td>24.9</td>
<td>0.47</td>
</tr>
<tr>
<td>20</td>
<td>0.79</td>
<td>0.51</td>
<td>0.50</td>
<td>0.23</td>
<td>47.8</td>
<td>24.5</td>
<td>0.50</td>
</tr>
<tr>
<td>21</td>
<td>0.79</td>
<td>0.49</td>
<td>0.48</td>
<td>0.28</td>
<td>45.7</td>
<td>29.6</td>
<td>0.49</td>
</tr>
<tr>
<td>22</td>
<td>0.79</td>
<td>0.47</td>
<td>0.45</td>
<td>0.17</td>
<td>43.7</td>
<td>17.1</td>
<td>0.47</td>
</tr>
<tr>
<td>23</td>
<td>0.79</td>
<td>0.51</td>
<td>0.44</td>
<td>0.23</td>
<td>42.5</td>
<td>22.9</td>
<td>0.46</td>
</tr>
<tr>
<td>24</td>
<td>0.79</td>
<td>0.54</td>
<td>0.40</td>
<td>0.14</td>
<td>38.1</td>
<td>14.1</td>
<td>0.42</td>
</tr>
<tr>
<td>25</td>
<td>0.80</td>
<td>0.52</td>
<td>0.38</td>
<td>0.24</td>
<td>37.9</td>
<td>24.1</td>
<td>0.55</td>
</tr>
<tr>
<td>26</td>
<td>0.80</td>
<td>0.51</td>
<td>0.35</td>
<td>0.33</td>
<td>34.9</td>
<td>34.1</td>
<td>0.47</td>
</tr>
<tr>
<td>27</td>
<td>0.79</td>
<td>0.52</td>
<td>0.40</td>
<td>0.29</td>
<td>39.7</td>
<td>30.0</td>
<td>0.52</td>
</tr>
<tr>
<td>28</td>
<td>0.78</td>
<td>0.53</td>
<td>0.34</td>
<td>0.24</td>
<td>33.9</td>
<td>24.0</td>
<td>0.45</td>
</tr>
<tr>
<td>29</td>
<td>0.79</td>
<td>0.55</td>
<td>0.37</td>
<td>0.29</td>
<td>35.5</td>
<td>28.9</td>
<td>0.48</td>
</tr>
<tr>
<td>30</td>
<td>0.79</td>
<td>0.50</td>
<td>0.42</td>
<td>0.29</td>
<td>41.1</td>
<td>28.9</td>
<td>0.56</td>
</tr>
<tr>
<td>31</td>
<td>0.79</td>
<td>0.54</td>
<td>0.40</td>
<td>0.27</td>
<td>39.3</td>
<td>27.3</td>
<td>0.56</td>
</tr>
<tr>
<td>32</td>
<td>0.79</td>
<td>0.67</td>
<td>0.36</td>
<td>0.32</td>
<td>34.7</td>
<td>31.9</td>
<td>0.55</td>
</tr>
<tr>
<td>33</td>
<td>0.79</td>
<td>0.80</td>
<td>0.44</td>
<td>0.36</td>
<td>42.4</td>
<td>37.3</td>
<td>0.54</td>
</tr>
<tr>
<td>34</td>
<td>0.79</td>
<td>0.80</td>
<td>0.38</td>
<td>0.33</td>
<td>36.6</td>
<td>33.6</td>
<td>0.60</td>
</tr>
<tr>
<td>35</td>
<td>0.79</td>
<td>0.76</td>
<td>0.41</td>
<td>0.32</td>
<td>40.2</td>
<td>32.5</td>
<td>0.56</td>
</tr>
<tr>
<td>36</td>
<td>0.79</td>
<td>0.80</td>
<td>0.40</td>
<td>0.33</td>
<td>38.2</td>
<td>33.5</td>
<td>0.54</td>
</tr>
<tr>
<td>37</td>
<td>0.79</td>
<td>0.75</td>
<td>0.36</td>
<td>0.37</td>
<td>32.4</td>
<td>30.4</td>
<td>0.54</td>
</tr>
<tr>
<td>38</td>
<td>0.79</td>
<td>0.79</td>
<td>0.41</td>
<td>0.32</td>
<td>39.8</td>
<td>32.2</td>
<td>0.55</td>
</tr>
<tr>
<td>39</td>
<td>0.79</td>
<td>0.78</td>
<td>0.37</td>
<td>0.36</td>
<td>36.6</td>
<td>35.8</td>
<td>0.55</td>
</tr>
<tr>
<td>40</td>
<td>0.79</td>
<td>0.78</td>
<td>0.36</td>
<td>0.28</td>
<td>34.7</td>
<td>28.1</td>
<td>0.48</td>
</tr>
<tr>
<td>41</td>
<td>0.79</td>
<td>0.78</td>
<td>0.39</td>
<td>0.24</td>
<td>37.4</td>
<td>24.1</td>
<td>0.56</td>
</tr>
</tbody>
</table>

LSD 5% | 0.103 | 0.098 | 10.76 | 0.103 | 0.149 | 7.575 | 1.137 |
S_χ | 0.037 | 0.035 | 3.873 | 0.037 | 0.054 | 2.726 | 0.409 |
Table 4. Continued

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Fm:Fv</th>
<th>(\Phi_{PSII})</th>
<th>ETR</th>
<th>qN</th>
<th>qP</th>
<th>SPAD</th>
<th>Vigor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>42</td>
<td>0.79</td>
<td>0.79</td>
<td>0.40</td>
<td>0.31</td>
<td>38.5</td>
<td>31.1</td>
<td>0.54</td>
</tr>
<tr>
<td>43</td>
<td>0.79</td>
<td>0.77</td>
<td>0.39</td>
<td>0.26</td>
<td>36.8</td>
<td>25.8</td>
<td>0.56</td>
</tr>
<tr>
<td>44</td>
<td>0.79</td>
<td>0.80</td>
<td>0.44</td>
<td>0.33</td>
<td>42.3</td>
<td>32.6</td>
<td>0.48</td>
</tr>
<tr>
<td>45</td>
<td>0.79</td>
<td>0.79</td>
<td>0.39</td>
<td>0.23</td>
<td>37.4</td>
<td>22.4</td>
<td>0.47</td>
</tr>
<tr>
<td>46</td>
<td>0.78</td>
<td>0.76</td>
<td>0.38</td>
<td>0.25</td>
<td>36.6</td>
<td>25.0</td>
<td>0.50</td>
</tr>
<tr>
<td>47</td>
<td>0.77</td>
<td>0.77</td>
<td>0.32</td>
<td>0.21</td>
<td>30.7</td>
<td>20.9</td>
<td>0.49</td>
</tr>
<tr>
<td>48</td>
<td>0.79</td>
<td>0.76</td>
<td>0.38</td>
<td>0.23</td>
<td>36.2</td>
<td>22.7</td>
<td>0.49</td>
</tr>
<tr>
<td>49</td>
<td>0.79</td>
<td>0.73</td>
<td>0.34</td>
<td>0.17</td>
<td>32.3</td>
<td>17.1</td>
<td>0.55</td>
</tr>
<tr>
<td>50</td>
<td>0.78</td>
<td>0.70</td>
<td>0.36</td>
<td>0.19</td>
<td>34.6</td>
<td>19.7</td>
<td>0.47</td>
</tr>
<tr>
<td>51</td>
<td>0.79</td>
<td>0.76</td>
<td>0.44</td>
<td>0.28</td>
<td>43.6</td>
<td>28.5</td>
<td>0.52</td>
</tr>
<tr>
<td>52</td>
<td>0.78</td>
<td>0.78</td>
<td>0.31</td>
<td>0.20</td>
<td>30.2</td>
<td>20.3</td>
<td>0.49</td>
</tr>
<tr>
<td>53</td>
<td>0.79</td>
<td>0.75</td>
<td>0.43</td>
<td>0.32</td>
<td>41.2</td>
<td>31.6</td>
<td>0.50</td>
</tr>
<tr>
<td>54</td>
<td>0.78</td>
<td>0.76</td>
<td>0.37</td>
<td>0.30</td>
<td>35.7</td>
<td>29.7</td>
<td>0.47</td>
</tr>
<tr>
<td>55</td>
<td>0.78</td>
<td>0.77</td>
<td>0.32</td>
<td>0.28</td>
<td>30.7</td>
<td>26.5</td>
<td>0.46</td>
</tr>
<tr>
<td>56</td>
<td>0.79</td>
<td>0.79</td>
<td>0.35</td>
<td>0.30</td>
<td>33.9</td>
<td>29.9</td>
<td>0.51</td>
</tr>
<tr>
<td>57</td>
<td>0.78</td>
<td>0.77</td>
<td>0.33</td>
<td>0.28</td>
<td>32.1</td>
<td>27.8</td>
<td>0.38</td>
</tr>
<tr>
<td>58</td>
<td>0.79</td>
<td>0.76</td>
<td>0.41</td>
<td>0.31</td>
<td>39.8</td>
<td>30.7</td>
<td>0.51</td>
</tr>
<tr>
<td>59</td>
<td>0.78</td>
<td>0.49</td>
<td>0.36</td>
<td>0.19</td>
<td>34.3</td>
<td>21.7</td>
<td>0.40</td>
</tr>
<tr>
<td>60</td>
<td>0.79</td>
<td>0.72</td>
<td>0.32</td>
<td>0.19</td>
<td>30.7</td>
<td>19.0</td>
<td>0.53</td>
</tr>
<tr>
<td>61</td>
<td>0.78</td>
<td>0.71</td>
<td>0.41</td>
<td>0.21</td>
<td>39.7</td>
<td>20.9</td>
<td>0.47</td>
</tr>
<tr>
<td>62</td>
<td>0.78</td>
<td>0.75</td>
<td>0.36</td>
<td>0.19</td>
<td>34.9</td>
<td>19.3</td>
<td>0.53</td>
</tr>
<tr>
<td>63</td>
<td>0.79</td>
<td>0.78</td>
<td>0.32</td>
<td>0.23</td>
<td>30.8</td>
<td>23.0</td>
<td>0.51</td>
</tr>
<tr>
<td>64</td>
<td>0.79</td>
<td>0.76</td>
<td>0.35</td>
<td>0.24</td>
<td>33.9</td>
<td>23.6</td>
<td>0.56</td>
</tr>
<tr>
<td>65</td>
<td>0.78</td>
<td>0.75</td>
<td>0.33</td>
<td>0.23</td>
<td>31.1</td>
<td>22.5</td>
<td>0.54</td>
</tr>
<tr>
<td>66</td>
<td>0.78</td>
<td>0.75</td>
<td>0.39</td>
<td>0.22</td>
<td>37.6</td>
<td>21.6</td>
<td>0.49</td>
</tr>
<tr>
<td>67</td>
<td>0.78</td>
<td>0.75</td>
<td>0.39</td>
<td>0.24</td>
<td>37.5</td>
<td>23.4</td>
<td>0.52</td>
</tr>
<tr>
<td>68</td>
<td>0.78</td>
<td>0.76</td>
<td>0.43</td>
<td>0.26</td>
<td>41.1</td>
<td>26.3</td>
<td>0.47</td>
</tr>
<tr>
<td>69</td>
<td>0.78</td>
<td>0.77</td>
<td>0.37</td>
<td>0.26</td>
<td>35.2</td>
<td>25.8</td>
<td>0.53</td>
</tr>
<tr>
<td>70</td>
<td>0.77</td>
<td>0.77</td>
<td>0.31</td>
<td>0.24</td>
<td>29.8</td>
<td>24.6</td>
<td>0.53</td>
</tr>
<tr>
<td>71</td>
<td>0.76</td>
<td>0.75</td>
<td>0.34</td>
<td>0.28</td>
<td>32.8</td>
<td>28.4</td>
<td>0.45</td>
</tr>
<tr>
<td>72</td>
<td>0.78</td>
<td>0.73</td>
<td>0.33</td>
<td>0.21</td>
<td>31.7</td>
<td>21.0</td>
<td>0.46</td>
</tr>
<tr>
<td>73</td>
<td>0.78</td>
<td>0.75</td>
<td>0.38</td>
<td>0.30</td>
<td>36.1</td>
<td>30.4</td>
<td>0.65</td>
</tr>
<tr>
<td>74</td>
<td>0.79</td>
<td>0.77</td>
<td>0.34</td>
<td>0.25</td>
<td>32.5</td>
<td>25.2</td>
<td>0.61</td>
</tr>
<tr>
<td>75</td>
<td>0.78</td>
<td>0.77</td>
<td>0.39</td>
<td>0.28</td>
<td>37.7</td>
<td>28.2</td>
<td>0.46</td>
</tr>
<tr>
<td>76</td>
<td>0.79</td>
<td>0.74</td>
<td>0.34</td>
<td>0.26</td>
<td>32.5</td>
<td>23.5</td>
<td>0.52</td>
</tr>
<tr>
<td>77</td>
<td>0.78</td>
<td>0.76</td>
<td>0.39</td>
<td>0.30</td>
<td>36.6</td>
<td>30.6</td>
<td>0.49</td>
</tr>
</tbody>
</table>

| LSD 5% | 0.103 | 0.098 | 10.76 | 0.103 | 0.149 | 7.575 | 1.137 |
| S_X | 0.037 | 0.035 | 3.873 | 0.037 | 0.053 | 2.726 | 0.409 |
Table 5. Means of shoot dry weight (g plant\(^{-1}\)) in rice genotypes under control and low temperature condition using LSD 5%

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Shoot d.wt (g plant(^{-1}))</th>
<th>Genotype No.</th>
<th>Shoot d.wt (g plant(^{-1}))</th>
<th>Genotype No.</th>
<th>Shoot d.wt (g plant(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>0.92</td>
<td>0.54</td>
<td>27</td>
<td>0.85</td>
<td>0.42</td>
</tr>
<tr>
<td>2</td>
<td>0.89</td>
<td>0.82</td>
<td>28</td>
<td>0.36</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>1.11</td>
<td>0.56</td>
<td>29</td>
<td>0.76</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>0.46</td>
<td>0.29</td>
<td>30</td>
<td>1.03</td>
<td>0.44</td>
</tr>
<tr>
<td>5</td>
<td>0.92</td>
<td>0.64</td>
<td>31</td>
<td>0.99</td>
<td>0.58</td>
</tr>
<tr>
<td>6</td>
<td>1.36</td>
<td>0.44</td>
<td>32</td>
<td>0.67</td>
<td>0.29</td>
</tr>
<tr>
<td>7</td>
<td>0.78</td>
<td>0.35</td>
<td>33</td>
<td>1.34</td>
<td>1.02</td>
</tr>
<tr>
<td>8</td>
<td>0.83</td>
<td>0.29</td>
<td>34</td>
<td>1.23</td>
<td>0.97</td>
</tr>
<tr>
<td>9</td>
<td>0.64</td>
<td>0.34</td>
<td>35</td>
<td>0.59</td>
<td>0.40</td>
</tr>
<tr>
<td>10</td>
<td>0.63</td>
<td>0.55</td>
<td>36</td>
<td>1.36</td>
<td>1.04</td>
</tr>
<tr>
<td>11</td>
<td>0.58</td>
<td>0.58</td>
<td>37</td>
<td>0.33</td>
<td>0.26</td>
</tr>
<tr>
<td>12</td>
<td>0.75</td>
<td>0.68</td>
<td>38</td>
<td>0.52</td>
<td>0.42</td>
</tr>
<tr>
<td>13</td>
<td>0.70</td>
<td>0.23</td>
<td>39</td>
<td>0.43</td>
<td>0.32</td>
</tr>
<tr>
<td>14</td>
<td>0.86</td>
<td>0.36</td>
<td>40</td>
<td>0.41</td>
<td>0.39</td>
</tr>
<tr>
<td>15</td>
<td>0.66</td>
<td>0.38</td>
<td>41</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>16</td>
<td>1.02</td>
<td>0.43</td>
<td>42</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>17</td>
<td>0.64</td>
<td>0.23</td>
<td>43</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>18</td>
<td>0.60</td>
<td>0.33</td>
<td>44</td>
<td>1.35</td>
<td>1.14</td>
</tr>
<tr>
<td>19</td>
<td>0.41</td>
<td>0.32</td>
<td>45</td>
<td>1.29</td>
<td>0.87</td>
</tr>
<tr>
<td>20</td>
<td>0.49</td>
<td>0.31</td>
<td>46</td>
<td>0.76</td>
<td>0.47</td>
</tr>
<tr>
<td>21</td>
<td>0.72</td>
<td>0.27</td>
<td>47</td>
<td>0.58</td>
<td>0.26</td>
</tr>
<tr>
<td>22</td>
<td>0.98</td>
<td>0.86</td>
<td>48</td>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>23</td>
<td>0.78</td>
<td>0.36</td>
<td>49</td>
<td>1.13</td>
<td>0.45</td>
</tr>
<tr>
<td>24</td>
<td>0.59</td>
<td>0.35</td>
<td>50</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>25</td>
<td>0.58</td>
<td>0.48</td>
<td>51</td>
<td>1.14</td>
<td>0.80</td>
</tr>
<tr>
<td>26</td>
<td>0.92</td>
<td>0.29</td>
<td>52</td>
<td>0.80</td>
<td>0.43</td>
</tr>
</tbody>
</table>

LSD5% 0.278
S\(_X\) 0.100
نوتاید بررسی‌های برجسته از این نشان دهنده است که در شرایط مشابه با نمونه‌های دیگر، مقدار آنزیم‌های تشخیص شده در دندان‌های گیاهی مشابه با نمونه‌های دیگر است. به طور کلی، نتایج این مطالعه نشان داده که در شرایط مشابه با نمونه‌های دیگر، مقدار آنزیم‌های تشخیص شده در دندان‌های گیاهی مشابه با نمونه‌های دیگر است.

در نتایج تجزیه واریانس نشان داد که سطح فاکتور اصلی و فرعی و اثر متقابل آن اختلاف معنی‌داری با یکدیگر بودند. در نتایج، مقدار آنزیم‌های تشخیص شده در دندان‌های گیاهی مشابه با نمونه‌های دیگر است.

در نتایج، مقدار آنزیم‌های تشخیص شده در دندان‌های گیاهی مشابه با نمونه‌های دیگر است. به طور کلی، نتایج این مطالعه نشان داده که در شرایط مشابه با نمونه‌های دیگر، مقدار آنزیم‌های تشخیص شده در دندان‌های گیاهی مشابه با نمونه‌های دیگر است.
نظر قدرت روشی گیاه‌های داشتند (جدول ۱) بطور معنی‌داری قدرت روشی با کاهش داد (از نظر عددی بزرگتر) جدول ۲ و ۳. قدرت روشی در شرایط تنش سرما مکمل به مزایای D183

لیبر و نویسندگان، دارای پیش‌نیاز با خلق داده که عملکرد کو آن امکان پذیرفته نبود. و فلمنگ که می‌داند (فرانتس‌آی و پیکلسک، ۲۰۰۳) برشانه بهتری برای نشان دادن بتری برای بوده و بیان کننده تحلیل بیشتر گیاه‌های بین در تنش سرما بوده است (جدول ۱) و ۳.

شاید و نشان دهنده این می‌خواهد که نشان دهنده این مرکز و اکتش انتظار داشتند (جدول ۲) بطور معنی‌داری قدرت روشی با کاهش داد (از نظر عددی بزرگتر) جدول ۲ و ۳. قدرت روشی در شرایط تنش سرما مکمل به مزایای D183

لیبر و نویسندگان، دارای پیش‌نیاز با خلق داده که عملکرد کو آن امکان پذیرفته نبود. و فلمنگ که می‌داند (فرانتس‌آی و پیکلسک، ۲۰۰۳) برشانه بهتری برای نشان دادن بتری برای بوده و بیان کننده تحلیل بیشتر گیاه‌های بین در تنش سرما بوده است (جدول ۱) و ۳.

شاید و نشان دهنده این می‌خواهد که نشان دهنده این مرکز و اکتش انتظار داشتند (جدول ۲) بطور معنی‌داری قدرت روشی با کاهش داد (از نظر عددی بزرگتر) جدول ۲ و ۳. قدرت روشی در شرایط تنش سرما مکمل به مزایای D183

لیبر و نویسندگان، دارای پیش‌نیاز با خلق داده که عملکرد کو آن امکان پذیرفته نبود. و فلمنگ که می‌داند (فرانتس‌آی و پیکلسک، ۲۰۰۳) برشانه بهتری برای نشان دادن بتری برای بوده و بیان کننده تحلیل بیشتر گیاه‌های بین در تنش سرما بوده است (جدول ۱) و ۳.

شاید و نشان دهنده این می‌خواهد که نشان دهنده این مرکز و اکتش انتظار داشتند (جدول ۲) بطور معنی‌داری قدرت روشی با کاهش داد (از نظر عددی بزرگتر) جدول ۲ و ۳. قدرت روشی در شرایط تنش سرما مکمل به مزایای D183

لیبر و نویسندگان، دارای پیش‌نیاز با خلق داده که عملکرد کو آن امکان پذیرفته نبود. و فلمنگ که می‌داند (فرانتس‌آی و پیکلسک، ۲۰۰۳) برشانه بهتری برای نشان دادن بتری برای بوده و بیان کننده تحلیل بیشتر گیاه‌های بین در تنش سرما بوده است (جدول ۱) و ۳.

شاید و نشان دهنده این می‌خواهد که نشان دهنده این مرکز و اکتش انتظار داشتند (جدول ۲) بطور معنی‌داری قدرت روشی با کاهش داد (از نظر عددی بزرگتر) جدول ۲ و ۳. قدرت روشی در شرایط تنش سرما مکمل به مزایای D183

لیبر و نویسندگان، دارای پیش‌نیاز با خلق داده که عملکرد کو آن امکان پذیرفته نبود. و فلمنگ که می‌داند (فرانتس‌آی و پیکلسک، ۲۰۰۳) برشانه بهتری برای نشان دادن بتری برای بوده و بیان کننده تحلیل بیشتر گیاه‌های بین در تنش سرما بوده است (جدول ۱) و ۳.
Table 6. Correlation between chlorophyll fluorescence attributes, SPAD value, and vigor in rice genotypes, under control condition

<table>
<thead>
<tr>
<th>Fv: Fm</th>
<th>Φ_{PSII}</th>
<th>ETR</th>
<th>qN</th>
<th>qP</th>
<th>SPAD</th>
<th>Vigor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td>0.429**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ETR</td>
<td>0.991**</td>
<td>0.452**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>qN</td>
<td>0.037**</td>
<td>0.023**</td>
<td>0.210**</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>qP</td>
<td>0.510**</td>
<td>0.526**</td>
<td>0.645**</td>
<td>0.653**</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPAD</td>
<td>0.573**</td>
<td>0.258**</td>
<td>0.227**</td>
<td>0.504**</td>
<td>0.547**</td>
<td>1</td>
</tr>
<tr>
<td>Vigor</td>
<td>-0.200ns</td>
<td>-0.226**</td>
<td>-0.519**</td>
<td>-0.098ns</td>
<td>-0.365**</td>
<td>-0.235**</td>
</tr>
</tbody>
</table>

* and **: Significant at 1% Probability level, respectively.
ns: Non-significant

Table 7. Correlation between chlorophyll fluorescence attributes, SPAD, and vigor in low temperature stress in rice genotypes

<table>
<thead>
<tr>
<th>Fv: Fm</th>
<th>Φ_{PSII}</th>
<th>ETR</th>
<th>qN</th>
<th>qP</th>
<th>SPAD</th>
<th>Vigor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td>0.199**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ETR</td>
<td>0.903**</td>
<td>0.218**</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>qN</td>
<td>0.022ns</td>
<td>-0.020ns</td>
<td>-0.154ns</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>qP</td>
<td>0.445**</td>
<td>0.334**</td>
<td>0.684**</td>
<td>0.595**</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPAD</td>
<td>0.552**</td>
<td>0.450**</td>
<td>0.145*</td>
<td>0.588**</td>
<td>-0.001ns</td>
<td>-0.316**</td>
</tr>
<tr>
<td>Vigor</td>
<td>-0.349**</td>
<td>-0.437**</td>
<td>-0.331**</td>
<td>-0.308**</td>
<td>-0.380**</td>
<td>-0.316**</td>
</tr>
</tbody>
</table>

* and **: Significant at 1% Probability level, respectively.
ns: Non-significant

Table 8. Stepwise regression for rice genotypes under low temperature and control conditions

<table>
<thead>
<tr>
<th>Intercept Term</th>
<th>Morphological characteristics</th>
<th>Fv: Fm</th>
<th>SPAD</th>
<th>SPAD + Fv: Fm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent</td>
<td>Weight</td>
<td>Control</td>
<td>Stress</td>
<td>Control</td>
</tr>
<tr>
<td>Shoot dwt</td>
<td>51.9†</td>
<td>0.66**</td>
<td>0.63**</td>
<td>0.59**</td>
</tr>
<tr>
<td>Root dwt</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†, †: Percent of total correlation, correlation coefficient (r) and significant at p<0.01, respectively
Table 9. Means of root dry weight (g plant⁻¹) in rice genotypes under control and low temperature condition using LSD 5%

<table>
<thead>
<tr>
<th>Genotype No.</th>
<th>Root d.wt (g plant⁻¹)</th>
<th>Genotype No.</th>
<th>Root d.wt (g plant⁻¹)</th>
<th>Genotype No.</th>
<th>Root d.wt (g plant⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>0.120</td>
<td>0.079</td>
<td>27</td>
<td>0.180</td>
<td>0.060</td>
</tr>
<tr>
<td>2</td>
<td>0.140</td>
<td>0.110</td>
<td>28</td>
<td>0.145</td>
<td>0.030</td>
</tr>
<tr>
<td>3</td>
<td>0.180</td>
<td>0.094</td>
<td>29</td>
<td>0.150</td>
<td>0.050</td>
</tr>
<tr>
<td>4</td>
<td>0.050</td>
<td>0.035</td>
<td>30</td>
<td>0.145</td>
<td>0.070</td>
</tr>
<tr>
<td>5</td>
<td>0.110</td>
<td>0.051</td>
<td>31</td>
<td>0.150</td>
<td>0.100</td>
</tr>
<tr>
<td>6</td>
<td>0.180</td>
<td>0.075</td>
<td>32</td>
<td>0.130</td>
<td>0.065</td>
</tr>
<tr>
<td>7</td>
<td>0.380</td>
<td>0.160</td>
<td>33</td>
<td>0.155</td>
<td>0.135</td>
</tr>
<tr>
<td>8</td>
<td>0.100</td>
<td>0.050</td>
<td>34</td>
<td>0.160</td>
<td>0.129</td>
</tr>
<tr>
<td>9</td>
<td>0.080</td>
<td>0.056</td>
<td>35</td>
<td>0.110</td>
<td>0.085</td>
</tr>
<tr>
<td>10</td>
<td>0.085</td>
<td>0.080</td>
<td>36</td>
<td>0.165</td>
<td>0.123</td>
</tr>
<tr>
<td>11</td>
<td>0.080</td>
<td>0.065</td>
<td>37</td>
<td>0.035</td>
<td>0.070</td>
</tr>
<tr>
<td>12</td>
<td>0.110</td>
<td>0.110</td>
<td>38</td>
<td>0.100</td>
<td>0.050</td>
</tr>
<tr>
<td>13</td>
<td>0.120</td>
<td>0.050</td>
<td>39</td>
<td>0.080</td>
<td>0.045</td>
</tr>
<tr>
<td>14</td>
<td>0.155</td>
<td>0.050</td>
<td>40</td>
<td>0.060</td>
<td>0.040</td>
</tr>
<tr>
<td>15</td>
<td>0.085</td>
<td>0.075</td>
<td>41</td>
<td>0.065</td>
<td>0.060</td>
</tr>
<tr>
<td>16</td>
<td>0.195</td>
<td>0.065</td>
<td>42</td>
<td>0.105</td>
<td>0.020</td>
</tr>
<tr>
<td>17</td>
<td>0.105</td>
<td>0.020</td>
<td>43</td>
<td>0.080</td>
<td>0.070</td>
</tr>
<tr>
<td>18</td>
<td>0.120</td>
<td>0.060</td>
<td>44</td>
<td>0.153</td>
<td>0.125</td>
</tr>
<tr>
<td>19</td>
<td>0.070</td>
<td>0.040</td>
<td>45</td>
<td>0.225</td>
<td>0.093</td>
</tr>
<tr>
<td>20</td>
<td>0.080</td>
<td>0.053</td>
<td>46</td>
<td>0.115</td>
<td>0.065</td>
</tr>
<tr>
<td>21</td>
<td>0.120</td>
<td>0.060</td>
<td>47</td>
<td>0.100</td>
<td>0.045</td>
</tr>
<tr>
<td>22</td>
<td>0.175</td>
<td>0.125</td>
<td>48</td>
<td>0.105</td>
<td>0.100</td>
</tr>
<tr>
<td>23</td>
<td>0.145</td>
<td>0.040</td>
<td>49</td>
<td>0.170</td>
<td>0.085</td>
</tr>
<tr>
<td>24</td>
<td>0.045</td>
<td>0.045</td>
<td>50</td>
<td>0.130</td>
<td>0.070</td>
</tr>
<tr>
<td>25</td>
<td>0.090</td>
<td>0.090</td>
<td>51</td>
<td>0.240</td>
<td>0.130</td>
</tr>
<tr>
<td>26</td>
<td>0.210</td>
<td>0.050</td>
<td>52</td>
<td>0.135</td>
<td>0.100</td>
</tr>
</tbody>
</table>

LSD5% 0.044
Sx 0.0158
سپاسگزاری

بدرن وسیله از پژوهشگاه بیوتکولوژی کشاورزی به ویژه بخش فیزیولوژی به خاطر همکاری و مساعدت‌هایی که در تهیه مقاله این اثری انجام گرفتند تشکر و سپاسگزاری می‌کردم.

References

Screening of rice genotypes for low temperature stress- using chlorophyll fluorescence

Hassibi1, P., F. Moradi2 and M. Nabipour3

ABSTRACT

Rice is a tropical and sub-hopical crop, which is sensitive to low temperature. Chlorophyll fluorescence is a common method for crop screening and monitoring of photosynthesis fluctuations under abiotic stresses. In this experiment, 77 rice genotypes including 49 line of International Rice Cold Tolerance Nursery (IRCTN 2005) and 28 Iranian rice were tested in split plot arrangement using compbility Randomized Design (CRD) in phytotrone for screening and monitoring of their performance. Variences International Rice Research Institute (IRRI) scoring system used for ranking of genotypes at normal and stress conditions. Chlorophyll fluorescence attributes, Chlorophyll content (SPAD values) as well as root and shoot dry weight were measured. Results showed that in low temperature 13/15 °C (night/ day, respectively) qP, ETR, Φ_{PSII}, Fv:Fm, SPAD value and vigor of seedlings as well as root and shoot dry weight significant 7 reduced as compared with normal temperature 22/29 °C (night/day, respectively). Among genotypes of IRCTN No. 33, 34, 36 and 44 (the Philippines) had the highest values and stability of Fv:Fm and Φ_{PSII} parameters in low and normal temperatures while Hoveizeh (from Iran) had the lowest tolerance to low temperature. In addition, there was a highly significant correlation between root dry matter and vigor, showing sensitivity of root to low temperature. Therefore, this parameter could be used as a criterion for selection of tolerant cultivars and genotypes to low temperatuer stress.

Key words: Chlorophyll fluorescence, Low temperatuer stress, Rice, Screening, SPAD value.