Effect of different irrigation regimes on growth, grain yield and its components of grain sorghum (Sorghum bicolor L.) cultivars under Isfahan conditions

چکیده

(Sorghum bicolor L.)

Effect of different irrigation regimes on growth, grain yield and its components of grain sorghum (Sorghum bicolor L.) cultivars under Isfahan conditions

چکیده

(Sorghum bicolor L.)

Effect of different irrigation regimes on growth, grain yield and its components of grain sorghum (Sorghum bicolor L.) cultivars under Isfahan conditions

چکیده

(Sorghum bicolor L.)

Effect of different irrigation regimes on growth, grain yield and its components of grain sorghum (Sorghum bicolor L.) cultivars under Isfahan conditions
سور کوم

یکساله از تهد غلات است که به دامنه وسیعی از شرایط اکولوجیکی و زراعی سازگار می‌باشد و در شرایطی که رطوبت درجه حرارت و مواد غذایی عوامل محدود کندش رشد سایر محصولات زراعی اشکال می‌تواند. عملکرد مطلوبی را تولید کند (Sorghum bicolor L. Moench).

سور کوم به دلیل دارا بودن خاصیت آنتی‌بیوتیکی، پوشش لایه مویی درمانی که منجر به تأخیر در پیشرفت بیماری شدید، به دلیل امکانات مصرف این سروکوم از طریق تنظیم حرکت می‌گردد، از دست دادن میزان اکسیژن به ایجاد کاهش هر واحد از پتانسیل اثر برکت مقاومت وجودی داده که این تاثیر را ایجاد می‌کند. مخاطب اولویت از مقاومت دوره‌ای تولید شده در سازوکوم بزرگ‌تری را دارد (Cho et al., 2006).

در این دسته‌بندی، برگ رکر که به پیشرفت این سروکوم کاهش می‌یابد و نیاز به تغذیه گیاه شده و به افزایش برکت کاهش می‌یابد (Eck et al., 1972; Garrity et al., 1982). تنها خاصیت دانشگاه که در مورد سازگاری آن می‌باشد و به شکلی که در مورد سازگاری آن می‌باشد و می‌کند، میزان این کاهش به شدت تنها و در حالی که به شدت کاهش کودکی جنب می‌باشد میزان سازگاری این میزان تجربه در بیماری در کاهش در بیماری در کاهش می‌باشد و به شدت می‌باشد. تنها خاصیت دانشگاه که در مورد سازگاری آن می‌باشد و به شکلی که در مورد سازگاری آن می‌باشد و می‌کند، میزان این کاهش به شدت تنها و در حالی که به شدت کاهش کودکی جنب می‌باشد میزان سازگاری این میزان تجربه در بیماری در کاهش می‌باشد و به شدت می‌باشد.
کرم در هکار فسفات امونیوم و ابزار جوی و یشته به‌وجود آمده‌است که در منجم تیر ماه در رده‌ی
کشت بطور باز، مقدار برخی رده‌ی
کشت میتواند بین دو برد ورود در هر رده
حدودی

t. افزایش شد. برای تشخیص زمان ابزاری در هر تیمار هر روز در ساعت ۲۳
تیخر از طشت تیخر از هر دنیای گیاه و ابزاری قدرات نظر انجام
پس از ریس سن میزان تیخر به مقدار مورد انجام مل.

برای درجه سانتی‌گراد قرار گرفت.

توضیح مجدد

نمونه‌ها مورد ورزش و رطوبت خاک محاسبه می‌کرده که به اندازه قطعی راه‌اندازه یا به حد ظرفیت
زورای بررسی، راندمان کاربرد آب ابزاری در هر تیمار
با استفاده از فرمول زیر

(Smith et al., 2005)

\[
\text{ea} = \frac{(\text{Fc} - \text{ө}) \times \text{BD.D}}{\text{کرک‌ اصلی/ \text{جریان ورودی}}} \times 100
\]

حجم آب در هر آبیاری و برای هر کرک بر اساس فرمول زیر محاسبه شد.

\[
\text{Vw} = (\text{Fc} - \text{ө}).\text{BD.A.D/ea}
\]
جدول ۱- دفعات آبیاری و حجم آب آبیاری در روش‌های مختلف آبیاری

<table>
<thead>
<tr>
<th>حجم آب آبیاری (متر مکعب در هکتار)</th>
<th>تعداد آبیاری</th>
<th>حجم آب آبیاری (متر مکعب در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در پایان تحقیق داده‌های بدست آمده توسط نرم‌افزار آماری MStat ۱۱ و تحملگرهای قرار
گرفته و Excel داده‌ها بر اساس آزمون چند‌متغیره ای
دقت‌کننده‌ای برای رس می‌تواند ها از نرم‌افزار
استفاده شد.

W.U.E و بحث

بر اساس اسناد مربوط به کشور (Olufayo et al., 1994) درجه‌سنجی کلیه‌ای به دعایی در تیمار
عمد ابیاری، در اکسترا روز گزارش دانسته در حالیکه
این مقدار در تیمارهای با ابیاری مطلوب حدود صفر
برد. نظر به دلیل اینکه کاهشی که بوسیله تغییر
مرحله می‌کند به نشت خشکی ساز کاری یافته
شد که تحقیق سلولی کمتری قبل از مرحله انتقال نیاز
داشته باشد (Nwa, 1979, ۱۹۷۹). شاید و تحلیلی از طریق
افزایش سرعت پر شدن دانه تا انتهای طول دوره رشد ارکام
سورکوم را کاهش می‌دهد (Abdulla et al., ۱۹۹۶) اثر
متفاوت ابیاری ۱ رقم بر تعداد روز تا رشد ارکام

<table>
<thead>
<tr>
<th>سر ۱</th>
<th>مورد ۴</th>
<th>سر ۲</th>
<th>مورد ۴</th>
<th>سر ۳</th>
<th>مورد ۴</th>
<th>سر ۴</th>
<th>مورد ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴۶۸۵</td>
<td>۴۶۸۵</td>
<td>۳۵۰۰</td>
<td>۳۵۰۰</td>
<td>۲۷۲۰</td>
<td>۲۷۲۰</td>
<td>۲۰۵۰</td>
<td>۲۰۵۰</td>
</tr>
</tbody>
</table>
Table 2. Analysis of variance for some agronomic characters in different irrigation regimes in sorghum cultivars.

<table>
<thead>
<tr>
<th>Character</th>
<th>Mean square (kg/m²)</th>
<th>df</th>
<th>Significance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>64194</td>
<td>1860.2</td>
<td>*</td>
<td>6536.7**</td>
</tr>
<tr>
<td>No. of panicle per plant</td>
<td>45952</td>
<td>56.89</td>
<td>**</td>
<td>56.89**</td>
</tr>
<tr>
<td>No. grain per panicle</td>
<td>64087</td>
<td>0.0154</td>
<td>*</td>
<td>0.033**</td>
</tr>
<tr>
<td>100 grain Weight per panicle</td>
<td>408870</td>
<td>9895293</td>
<td>*</td>
<td>1860.2*</td>
</tr>
<tr>
<td>Harvest index</td>
<td>1460</td>
<td>0.006</td>
<td>*</td>
<td>0.0154</td>
</tr>
<tr>
<td>Biological yield</td>
<td>408870</td>
<td>590.9</td>
<td>*</td>
<td>4.623</td>
</tr>
<tr>
<td>Grain yield</td>
<td>408870</td>
<td>4.623</td>
<td>*</td>
<td>4.623</td>
</tr>
<tr>
<td>W.U.E</td>
<td>320.9</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>Leaf Area</td>
<td>560347</td>
<td>0.00287</td>
<td>*</td>
<td>0.0371</td>
</tr>
<tr>
<td>No. of leaves</td>
<td>560347</td>
<td>5603047</td>
<td>**</td>
<td>3.221</td>
</tr>
<tr>
<td>Days to maturity</td>
<td>320.9</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>Replication</td>
<td>20915</td>
<td>3.43</td>
<td>*</td>
<td>3.43</td>
</tr>
<tr>
<td>Irrigation (I)</td>
<td>50.53</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>Cultivar (C)</td>
<td>50.53</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>S.O.V</td>
<td>50.53</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>Error a</td>
<td>50.53</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
<tr>
<td>Error b</td>
<td>50.53</td>
<td>17.7</td>
<td>*</td>
<td>17.7</td>
</tr>
</tbody>
</table>

* ns: Non. significant

* **: Significant at 5% and 1 % of probability levels, respectively

** CV (%): Coefficient of variation (%)

* : بیشتر معنی دار در سطح احتمال ۰/۰۰۱ مطرح می‌شود

** : غیر معنی‌دار
Table 3. Mean comparison for agronomic characters in different irrigation regimes and sorghum cultivars

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days to maturity (cm)</th>
<th>Plant Height (cm)</th>
<th>No. of leaves</th>
<th>Leaf area (cm²)</th>
<th>No. of panicle</th>
<th>No. grain per plant</th>
<th>100 grain Weight (g)</th>
<th>Grain yield (kg/ha)</th>
<th>Biological yield (kg/ha)</th>
<th>Harvest index (%)</th>
<th>W.U.E (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>127 a</td>
<td>137.2 a</td>
<td>10.8 a</td>
<td>5.70 a</td>
<td>1.22 a</td>
<td>1501 a</td>
<td>2.179 a</td>
<td>7140 a</td>
<td>21390 a</td>
<td>33.4 a</td>
<td>1.52 c</td>
</tr>
<tr>
<td>I₂</td>
<td>125 b</td>
<td>128.5 b</td>
<td>10.4 b</td>
<td>5.28 b</td>
<td>1.20 a</td>
<td>1429 a</td>
<td>2.168 a</td>
<td>6380 b</td>
<td>19340 b</td>
<td>32.9 a</td>
<td>1.82 b</td>
</tr>
<tr>
<td>I₃</td>
<td>119 b</td>
<td>113.0 c</td>
<td>9.9 a</td>
<td>3.91 c</td>
<td>1.10 b</td>
<td>1228 b</td>
<td>2.100 a</td>
<td>5120 c</td>
<td>17280 c</td>
<td>29.5 b</td>
<td>1.88 a</td>
</tr>
<tr>
<td>I₄</td>
<td>113 c</td>
<td>100.1 d</td>
<td>9.8 a</td>
<td>3.03 d</td>
<td>1.02 c</td>
<td>1054 c</td>
<td>1.768 b</td>
<td>3560 d</td>
<td>13250 d</td>
<td>26.8 c</td>
<td>1.78 b</td>
</tr>
</tbody>
</table>

Means, in each column and for each treatment, followed by the same letter(s) are not significantly different at 5% of probability level- using Duncan’s Multiple Range Test.
Table 4. Simple correlation coefficients between yield components and grain yield in sorghum.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Grain yield</th>
<th>No. grain per panicle</th>
<th>100 grain Weight</th>
<th>No. of panicle per plant</th>
<th>Biological yield</th>
<th>Harvest index</th>
<th>Plant height</th>
<th>Leaf area index</th>
<th>Days to maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. grain per panicle</td>
<td>0.832**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of 100 grain</td>
<td>0.541*</td>
<td>-0.391 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of panicle per plant</td>
<td>0.210**</td>
<td>-0.220 ns</td>
<td>-0.320**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological yield</td>
<td>0.791**</td>
<td>0.692**</td>
<td>0.571*</td>
<td>0.391**</td>
<td>0.570**</td>
<td>0.430**</td>
<td>0.081**</td>
<td>-0.570**</td>
<td>1</td>
</tr>
<tr>
<td>Harvest index</td>
<td>0.870**</td>
<td>0.586*</td>
<td>0.430**</td>
<td>0.081**</td>
<td>0.430**</td>
<td>0.586**</td>
<td>0.081**</td>
<td>-0.570**</td>
<td>1</td>
</tr>
<tr>
<td>Plant height</td>
<td>0.519*</td>
<td>0.362**</td>
<td>0.428**</td>
<td>0.642**</td>
<td>0.744**</td>
<td>0.085**</td>
<td>0.081**</td>
<td>-0.570**</td>
<td>1</td>
</tr>
<tr>
<td>Leaf area index</td>
<td>0.728**</td>
<td>0.571*</td>
<td>0.236**</td>
<td>0.272**</td>
<td>0.671*</td>
<td>0.115**</td>
<td>0.544*</td>
<td>0.544*</td>
<td>1</td>
</tr>
<tr>
<td>Days to maturity</td>
<td>-0.342**</td>
<td>0.483**</td>
<td>-0.512**</td>
<td>0.128**</td>
<td>0.483**</td>
<td>-0.413**</td>
<td>0.382**</td>
<td>0.592**</td>
<td>1</td>
</tr>
</tbody>
</table>

*, **: Significant at 5% and 1% of probability levels, respectively.
ns: Non. significant
Fig. 1. Means of interaction effect between irrigation regimes × cultivars on days to maturity.

Fig. 2. Means of interaction effect between irrigation regimes × cultivars on leaf area index.
Apirazi et al. (2004) showed that under different irrigation regimes, the number of grains per panicle varied. Matthews et al. (2004) also reported that variations in irrigation regimes significantly affected the yield of barley, with the highest yield observed under the optimal irrigation regime.

Table 1: Number of Grains per Panicle

<table>
<thead>
<tr>
<th>Irrigation Regime</th>
<th>Local Ardestan</th>
<th>Payam</th>
<th>Sepideh</th>
<th>Kimya</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1500</td>
<td>1400</td>
<td>1300</td>
<td>1200</td>
</tr>
<tr>
<td>I2</td>
<td>1600</td>
<td>1550</td>
<td>1450</td>
<td>1350</td>
</tr>
<tr>
<td>I3</td>
<td>1700</td>
<td>1650</td>
<td>1550</td>
<td>1450</td>
</tr>
<tr>
<td>I4</td>
<td>1800</td>
<td>1750</td>
<td>1650</td>
<td>1550</td>
</tr>
</tbody>
</table>

Figure 3: Means of interaction effect between irrigation regimes × cultivars on number of grain per panicle.
Fig 4. Means of interaction effect between irrigation regimes × cultivars on grain yield

در بوته (I) عدده 1 داشت، ولی رقم بومی اردستان به سبب اصلی پنجه بازار دریک شد. نکرد (جدول 7), وجود غلیظ اتیکات شدید در این رقم شده است با افزایش میزان تنش خشکی از تیمار ای. تعادل دانه در پاتاکول بهبود مخصوص داری سانکارپانیادان و بانگاروسوم (Sankarapandian & Bangarusamy, 1996) کردن در شرایط تنش خشکی مرگ دانه های پرگده ایجاد اختلال در تشکیل و گسترش انعنا جانی پاتیکول بعلت نقطه‌ی ارزی و مواد آلی قابل دسترس، افزایش مقاومت روزنه‌ای و افزایش پارازایند های شیمیایی موجب کاهش تعادل دانه در پاتاکول گردید. اثر رزق ابایی بر وزن صد دانه در تیمارهای 1, 2, 3 از نظر اماری بیشتر دارند و 4 از نظر وزن صد دانه اختلاف اماری وجود داشت (جدول 9) در پاتاکول و کمترین وزن صد دانه به ترتیب متصل به ارقام اردستان (4) کرم و (3) کرم (جدول 1). فرم و همکاران (Blum et al., 1997) در بروسا وزن صد دانه ارقام
نفت رژیم های مختلف آبیاری بر رشد...
Fig 5. Means of interaction effect between irrigation regimes × cultivars on harvest index

Fig 6. Means of interaction effect between irrigation regimes × cultivars on biological yield
References

Effect of different irrigation regimes on growth, grain yield and its components of grain sorghum (*Sorghum bicolor* L.) cultivars under Isfahan conditions

Razmi ¹, N. and M. Chasemi ²

ABSTRACT

Effect of four irrigation regimes (irrigation after 100, 130, 160 and 190 mm evaporation from class A pan) on yield and its components of four grain sorghum cultivars namely Local Ardestan, Payam, Sepedeh and Kimya was studied, using split plot design with four replications, in Research Field Station of Faculty Agriculture, Isfahan Technology University. Analysis of variance and mean comparison between treatments showed that yield and its components had negative response to water stress condition, and with increasing irrigation intervals from *I*₁ to *I*₄ these values decreased significantly. Therefore, grain yield reduced 9% in *I*₂, 27% in *I*₃ and 51% in *I*₄ in comparison to *I*₁. There was considerable variation among the cultivars in grain yield and its components. Results also showed maximum plant height and biological and grain yield in local Ardestan, maximum grain per panicle in Sepideh and latest maturity to Kimya cultivars. Irrigation×cultivar had significant effect on grain yield and its components of sorghum cultivars. Local Ardestan cultivar had the least yield reduction under this conditions.

Key words: Irrigation regimes, Grain yield, Yield components, Sorghum, Water use efficiency.

Received: June, 2007

1-Researcher, Agriculture and National Resources Research Center of Ardabil (Moghan) (Corresponding author)
2- Faculty member, Agriculture and National Resources Research Center of Ardabil (Moghan)