WheatPot: A simple model to simulate grain yield potential of spring wheat

I- Model description and evaluation

WheatPot: A simple model to simulate grain yield potential of spring wheat

I- Model description and evaluation
فناوری‌های سازگار با سیستم‌های امداد اطلاعات. این بدان معناست که عملکرد داده‌های زاری‌تاریکی محدودیت‌های اصول زراعت و بازگذاری در محدودیت‌های اصلی اعمال شده و به کار برای راهکارهای زراعتی که اختلاف عملکرد کردار، از سویی که آفرید یک کار. مصرف نهاده (Pala, 1995) که کاهش نهادکشنده رشد و استقرار (Asadi and Clemente, 2003) آزمایش‌های مزدوج از عوامل مؤثر بر رشد گیاه را در خاص و در (Amir and Sinclair, 1991) محدودیت‌های از مدل‌هایی ساده‌شده که تاکنون از آن روش برای بررسی‌های تغییر در همان زراعتی مختلف از جمله سو (Sheehy et al., 1990) و برنج (Muchow et al., 1990) استفاده شده‌است. در اطلاعات بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد. بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد. بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد. بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد. بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد. بازاریه، تغییرات معنی‌دار بافت در این‌که مستقل رشد و گیاه مورد استفاده قرار می‌گیرد.
et al., "WheatPot: A Model for Wheat Productivity Benchmarking".
Table 1. Locations, cultivars and applied treatments in experiments for evaluation of model

<table>
<thead>
<tr>
<th>Location and Years</th>
<th>Location and Years</th>
<th>Latitude and Longitude</th>
<th>Treatments</th>
<th>Cultivars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahvaz 2003-2004</td>
<td>Ahvaz 2004-2005</td>
<td>31° 21' N, 48° 8' E</td>
<td>Cultivar and sowing date</td>
<td>Fong, Chamran, Star</td>
</tr>
<tr>
<td>Ramin University 2004-2005</td>
<td>Ramin University 2004-2005</td>
<td>31° 36' N, 48° 41' E</td>
<td>Cultivar</td>
<td>Fong, Chamran, Star</td>
</tr>
<tr>
<td>Bostan 2004-2005</td>
<td>Bostan 2004-2005</td>
<td>31° 4' N, 48° 0' E</td>
<td>Cultivar</td>
<td>Fong, Chamran, Star</td>
</tr>
</tbody>
</table>

WheatPot

Fig. 1. Algorithm for WheatPot model

شکل 1. – الگوریتم برای مدل WheatPot
Fig. 2. Relationship between development index and fraction of intercepted radiation

\[Y = HI \times RUE \sum_{i=1}^{n} (Q_{dPARi} \times P_i \times F_i \times \Delta E_i) \]
Fig. 3. Temperature response of development rate

\[
DVR_i = \sum_{j=0}^{\text{DVI}_i - 1} DVR_j
\]

where:

\[
DVR = DVR_{max} \cdot f(T)
\]

\[
f(T) = \begin{cases}
\frac{(2(T-T_{\text{min}})^a(T_{\text{opt}}-T_{\text{min}})^a-(T_{\text{opt}}-T_{\text{min}})^2a}{(T_{\text{opt}}-T_{\text{min}})^2a} & \text{if } T_{\text{min}} < T < T_{\text{max}} \\
0 & \text{if } T > T_{\text{max}} \text{ or } T < T_{\text{min}}
\end{cases}
\]

\[
\alpha = \frac{\ln 2}{\ln(T_{\text{max}}-T_{\text{min}})/(T_{\text{opt}}-T_{\text{min}})}
\]
Table 1. Correspondence of development index (DVI) to Zadoks stages (ZS)

<table>
<thead>
<tr>
<th>Zadoks Scale</th>
<th>Development Index</th>
<th>Commencement of stage</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-1.0</td>
<td>Sowing</td>
<td>Pre- Emergence</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.5</td>
<td>Germination</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>0.0</td>
<td>Emergence</td>
<td></td>
</tr>
<tr>
<td>14.22</td>
<td>0.20</td>
<td>Spiklet Initiation</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>0.45</td>
<td>Terminal Spiklet</td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>0.65</td>
<td>Flag Leaf</td>
<td></td>
</tr>
<tr>
<td>50.00</td>
<td>0.90</td>
<td>Spike Emergence</td>
<td></td>
</tr>
<tr>
<td>60.00</td>
<td>1.00</td>
<td>Anthesis</td>
<td>Post- Anthesis</td>
</tr>
<tr>
<td>70.00</td>
<td>1.15</td>
<td>Milky grain</td>
<td></td>
</tr>
<tr>
<td>80.00</td>
<td>1.50</td>
<td>Doughy grain</td>
<td></td>
</tr>
<tr>
<td>90.00</td>
<td>1.95</td>
<td>Pysiological Maturity</td>
<td>Ripening</td>
</tr>
<tr>
<td>92.00</td>
<td>2.00</td>
<td>Maturity</td>
<td></td>
</tr>
</tbody>
</table>

WheatPot: ﻣﺪﻟﻲﺷﺒﻴﻪ...”

(Wang and Engel, 1998)

$Ra = 37.6 \cdot dr(Ws \cdot Sin(\lambda \cdot Sin(\delta) + Cos(\lambda \cdot Cos(\delta) Sin Ws))$ \hspace{1cm} (7)

$Ws = Arc cos(- tan(\lambda \cdot tan(\delta))$ \hspace{1cm} (8)

$dr = 1 + 0.033 \cdot Cos(0.0172 J))$ \hspace{1cm} (9)

$\delta = 0.409 Sin(0.0172 J - 1.39)$ \hspace{1cm} (10)

$J=integer(30.5 M - 14.6)$ \hspace{1cm} (11)

$N = 7.64 \cdot Ws$ \hspace{1cm} (12)

$Rs = 0.77(0.25 + 0.5 n / N) Ra$ \hspace{1cm} (13)

$PAR = Rs \times 0.5$ \hspace{1cm} (14)
عملکردهای به دست آمده از آزمایش‌های مزراعه
مدل ارزیبند
MEP (Mean Percentage Error) ردیاب
RMSE (Root Mean Square Error) ارزیبند
MBE (Mean Bias Error) ارزیبند
d (Willmot Agreement Index) ارزیبند

({eq})

اگر یک مدل به دست آمده از آزمایش‌های مزراعه یا داده‌هایی به دست آمده از آزمایش‌های مزراعه در دانشگاه رامین، دژفون و بستان در سال زراعت شناخته شده باشد، سال‌های اجرای آزمایش به داده‌های هواشناسی مربوط به آن سال در هر آزمایش تنظیم و مدل اجرا گردیده. سپس عملکردهای حاصل از شیب‌های سری‌های توسط مدل با

\[
RMSE = \left[\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2 \right]^{0.5}
\]

\[
MBE = \frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)
\]
\[
MPE = \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{O_i - P_i}{O_i} \right) \right] \cdot 100
\]

(17)

\[
d = \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (P_i - O_{avg})^2 + (O_i - O_{avg})^2}
\]

(18)

Ке در أَين معادلات:

\[
O_i = \text{مقدار مشاهدة شدة (وقائع)}
\]

\[
O_{avg} = \text{مقدار مشاهدة شدة است.}
\]

مراحل فنولوژی

WheatPot: مدل می‌باشد برای مراحل گلدهم و رسیدگی، مقدار RMSE مراحل نشان می‌دهد که مدل WheatPot را به طور رضایت‌آور راه‌اندازی شده و مشاهده شده برای گلدهم و رسیدگی نیاز به بودن دارد.

\[y = 0.916x + 8.654 \]

\[R^2 = 0.94 \]

(b) - رابطهٔ بین زمان گلدهم (a) و رسیدگی فنولوژی مراحل شده و اندازهٔ شده.

Fig 4. Relationship between simulated and observed anthesis (a) and physiological maturity (b) dates

عملکرد دانه و تولید ماده خشک

مدل مورد نظر برای شرایط محلی اجرا و توانایی آن برای عملکرد دانه و ماده خشک مورد ارزیابی قرار گرفت. تفاوت بین عملکرد دهه‌ای دانه
مصاحبه شده RMSE، MBE، MPE

به ترتیب ۰/۳۷، ۰/۰۹ و ۸۸/۰ \%.

به ترتیب کارکرد ۴۲/۰ (Ghaffari et al., 2001) و ۹۲/۰ (Bannayan et al., 2003) در هکار.

به ترتیب کارکرد ۸۸/۰ (Timsina and Hymphres, 2003).

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

\begin{align*}
y &= 1.0964x - 2.0688 \\
R^2 &= 0.90
\end{align*}

به ترتیب مدل \textit{WheatPot} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{WheatPot} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

\begin{align*}
y &= 1.0964x - 2.0688 \\
R^2 &= 0.90
\end{align*}

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.

\begin{align*}
y &= 1.086x + 113.98 \\
R^2 &= 0.89
\end{align*}

به ترتیب مدل \textit{AFRECWHEAT2} ۴۲/۰ \textit{X}۰/۹ (b) و مدل \textit{AFRECWHEAT2} ۹۸/۰ \textit{X}۰/۹ (a) در هکار.
Table 4. Comparison of the results of anthesis and physiological maturity dates; simulated grain yield and biomass by wheat potential model (WheatPot) with observed data

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Anthesis (DAP)*</th>
<th>Physiological Maturity (DAP)</th>
<th>Grain Yield (kg/ha⁻¹)</th>
<th>Biomass (kg/ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulated</td>
<td>Observed</td>
<td>Difference</td>
<td>Simulated</td>
</tr>
<tr>
<td>Ahvar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fong</td>
<td>88</td>
<td>83</td>
<td>5</td>
<td>128</td>
</tr>
<tr>
<td>Chamran</td>
<td>96</td>
<td>92</td>
<td>4</td>
<td>134</td>
</tr>
<tr>
<td>Star</td>
<td>103</td>
<td>102</td>
<td>1</td>
<td>137</td>
</tr>
<tr>
<td>Chamran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fong</td>
<td>82</td>
<td>81</td>
<td>1</td>
<td>125</td>
</tr>
<tr>
<td>Chamran</td>
<td>93</td>
<td>89</td>
<td>4</td>
<td>137</td>
</tr>
<tr>
<td>Star</td>
<td>105</td>
<td>102</td>
<td>3</td>
<td>145</td>
</tr>
<tr>
<td>Chamran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fong</td>
<td>85</td>
<td>89</td>
<td>-4</td>
<td>126</td>
</tr>
<tr>
<td>Chamran</td>
<td>97</td>
<td>100</td>
<td>-3</td>
<td>138</td>
</tr>
<tr>
<td>Star</td>
<td>107</td>
<td>111</td>
<td>-4</td>
<td>145</td>
</tr>
<tr>
<td>Chamran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fong</td>
<td>85</td>
<td>90</td>
<td>-5</td>
<td>130</td>
</tr>
<tr>
<td>Chamran</td>
<td>93</td>
<td>94</td>
<td>-1</td>
<td>135</td>
</tr>
<tr>
<td>Star</td>
<td>107</td>
<td>103</td>
<td>4</td>
<td>139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th>MBE</th>
<th>MPE</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahvar</td>
<td>3.5</td>
<td>0.41</td>
<td>2.6</td>
<td>0.95</td>
</tr>
<tr>
<td>Chamran</td>
<td>2.5</td>
<td>-0.08</td>
<td>1.2</td>
<td>0.96</td>
</tr>
<tr>
<td>Star</td>
<td>2.5</td>
<td>0.57</td>
<td>10.4</td>
<td>0.88</td>
</tr>
</tbody>
</table>

* Days After Planting
Table 5. Analysis of model sensitivity to sowing date, temperature and solar radiation

<table>
<thead>
<tr>
<th>Factor</th>
<th>Variation %</th>
<th>Grain Yield (kg/ha)</th>
<th>Change Relative to Control (kg/ha)</th>
<th>Change Relative to Control %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>7495</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sowing Date</td>
<td>+10</td>
<td>7630</td>
<td>+33</td>
<td>+1.8</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>7040</td>
<td>-457</td>
<td>-6.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>+10</td>
<td>7018</td>
<td>-497</td>
<td>-6.4</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>7710</td>
<td>-213</td>
<td>-2.8</td>
</tr>
<tr>
<td>Radiation</td>
<td>+10</td>
<td>8247</td>
<td>+50</td>
<td>+10.0</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>6748</td>
<td>-750</td>
<td>-10.0</td>
</tr>
</tbody>
</table>
References

WheatPot: A simple model to simulate grain yield potential of spring wheat
I- Model description and evaluation

B. Andarzian¹, A. M. Bakhshandeh², M. Bannayan³, Y. Emam⁴, G. Fathi⁵, K. Alami Saeed⁶

ABSTRACT

A simple mechanistic crop growth simulation model “WheaPot” was developed for simulating site-specific wheat yield potential. The model simulates critical phonological stages and dry matter production as a function of temperature and solar radiation. Crop aspects of the model including developmental stages, dry matter production and grain yield are modulated in sub-models. The model requires inputs of site mean monthly weather data (minimum and maximum temperatures in °C) and photosynthetically active radiation (PAR in MJ m⁻²), and plant characteristics such as sowing date, required growing degree days (GDD) for vegetative and reproductive phases, radiation use efficiency (RUE in g MJ⁻¹), and harvest index (HI). The model was verified using different experiments, which were carried out in several locations in Khuzestan province in 2003-2004 and 2004-2005 growing seasons. Comparison of simulated and measured values under non-limiting conditions indicated satisfactory performance of the model in predicting anthesis and maturity dates, and a fair prediction of dry matter production and grain yield with root mean square error (RMSE), 3.5 d, 4 d, 0.65 t ha⁻¹ and 1.69 t ha⁻¹, respectively. The model proved as a useful tool for a rough estimation of wheat yield potential at regional level where there is no access to daily weather data.

Key words: Modeling, Yield potential, Wheat, Dry matter, Grain yield, Maturity.

Received: Februray, 2007.
1- Faculty member, of Agriculture and Natural Resources Research Center of Khuzestan, Ahvaz, Iran (Corresponding author)
2- Professor, Agriculture and Natural Resources University of Ramin, Ahvaz, Iran.
3- Associate Prof. of Universityof Ferdowsi, Mashhad, Iran.
4- Professor, The University of Shiraz.
5- Associate Prof., Agriculture and Natural Resources University Of Ramin, Ahvaz, Iran.
6- Assistant Prof., Agriculture and Natural Resources University of Ramin, Ahvaz, Iran.