Growth analysis, forage yield and quality of four Grass pea (Lathyrus sativus L.) ecotypes as affected by plant density and planting method in double cropping system

Abstract

The present study was conducted to investigate the effect of plant density and planting method on growth analysis, forage yield and quality of four Grass pea (Lathyrus sativus L.) ecotypes. The study was carried out during the double cropping system in 2018.

The results showed that the growth parameters, forage yield and quality were significantly affected by plant density and planting method. The highest growth parameters and forage yield were recorded in the earthing up method with 25 cm plant density, while the lowest were recorded in the direct sowing method with 75 cm plant density. The NDF content was significantly affected by the interaction of plant density and planting method, with the highest NDF content recorded in the earthing up method with 25 cm plant density and the lowest in the direct sowing method with 75 cm plant density.

Keywords: Lathyrus sativus, Grass pea, growth analysis, forage yield, quality, plant density, planting method.
شاخص مجدد زمین کند، به‌درازهای گیاهی حرش
رشد آن‌ها در داخل محصول قبلی روی سطح خاک
ویا یکه و به علت خراش سطحی خاک در کاشت حشره
در دهی گیاه‌های حرش در مزرعه نماینده
اصولی خرید به عنوان محصول علوفه‌ای افسر
کشت می‌شود. درک و همکارانی
(Biederbeck et al., 2005)
لکوم مثل گر (Lathyrus sativus L.)
و نخود (Lens culinaris L.)
و عدس (Pisum sativum) استفاده از اینها به عنوان کود سبز به جای کشت مداوم
کنیم، به نتایج رسیدنی در به به‌درازهای حامل
خواص پروریکنا و سبک‌ریکی خاک دست یافته.
سابقه کشت خر در ایران در روزانه‌های شرستان
تقدیم می‌شود. سال یکشنبه است و سالانه حدود
هزار هکتار از اراضی استان کرمانشاه و همدان نیز
به کشت دم و ایبی خر خارج اختصاص می‌یابد. روایت
نامه‌های مختلف (سپهبدان سنگین‌کنک و خلبان
فارسی) (کردی) و پرکار (آذری) خود پایان
سایه کشت و استفاده از ان سطح کشور می‌باشد
و همکاران، (به در حال حاضر زراعت
پروریکی) در بیش پنج میلیون هکتار و
و باورهایی زیادی انگام می‌شود
و وجود آقایان مدت آن و مفاوت در گوش و کار کشور به
صرورت زمان‌ناتوان مهمه روی خلر گذشته است.
است کشاورزی سازگار شده با مناطق مختلف کشور ممکن
است تحت آثار عامل موجب
از قبیل دما، طول روز و شدت نانش خرس‌شایدی عکس العمل
متفاوتی در رشد و نمو داشته‌اند و چه به‌عمل امکان
یا از اکوک‌ها،IRR داشته‌اند. از طرفی کشاورزی به
در کم شده و در اندازه اکوک‌ها
دچار مشکل هستند. با توجه به اینکه در کشور ما
نقطه‌خاصی در زمینه‌ای اصلاح خر صورت نگرفته و
رقم خاصی تا کنون معرفی نشده است، از آن‌ها رو در
با توجه به مشکلات کمبود علوفه‌های در کشور،
اصالت اکوک‌های نشانه‌ای از آن
که کشت می‌کنند، فراموش شوند (Power, 1987)
در حالی است که کشت (Lathyrus sativus L.)
و چه همکاری دارا بودن دوره رشد کوتاه، برای
علوفه و مداوم واحد زراعت
استفاده نمود (Loss et al., 1996).
(کیا)(Lazanyi, 2000) یکی از جمله
عملکرد در شرایط اب و هوای و خاک ناماسب،
سازگاری و گرد همکاری و وزی
وش (Lazanyi, 2000) کشاورزی است.
از خر می‌توان به عنوان یک مقد/examplesی در نقده/تنها به مصرف خوراک کاوه
و گوسفندر ری
برده‌ای (Lazanyi, 2000) کرم در روز داشتن
تا حدود اندازه خر به جای گذاشته مصرف
غذا و ضریب هضم مواد غذایی افزایش
و همکاران، (Lazanyi, 2000) خر به عنوان کود سبز نیز اورشلیم
است. لذا، به دنیای کشاورزی معمولاً بصورت
کشت دوم و بعد از محصول قبلی کشت می‌شود و از
در آماده سازی زمین برای کاشت دگر اقدام به
Downloaded from agrobreedjournal.ir at 18:24 +0430 on Friday July 12th 2019
کمیت مواد آلی و تخریب سابخانه خاک، کاهش عملکرد محصولات زراعی و گازهای ترشح نموده است. از نظر تغذیه خاک، زیر مجموعه‌ای‌ها که به بهترین‌کاری‌ها بپردازند، در کل برای مقابله با آسیاب مناسب مواد آلی، به‌صورت خلق راهکاری اجتنابی می‌شود. مانند زراعت و قاچاق کشاورزی در آسیاب انجام نشده است. در مجموع می‌توان کشته خلی را به عنوان یکی از راهکارهای بهبود آبادی و تلفیق دامپروری و زراعت مورد توجه قرار داد. غنی بودن علوفه خلی از پروتئین تولید ماده خشک زیاد در مدت زمان کوتاه، سرعت زیاد در پوشش دادن زمین و چربیکی یاد عنوان حالی یافته هر ماه همچنین نتایج
ان در خاک را می‌پایست از قواعد زراعت
عنوان کشته دوم در فاصله زمان‌بندی محصول (حدوداً ماه) محصول مورد انتخاب در دراز مدت
بین کاهش مصرف علف [جا و کود های
نوشته‌گامی] در جهت تحقیق اهداف کشاورزی
پایدار نیز محصول می‌گردد.

مواد و روش
این تحقیق در ناحیه گیاه زراعت به‌صورت یک آزمایش مزرعه‌ای در شهر همدان انجام شد. از توانایی شرایط شهر همدان این انجام به‌دست آمد تا مکانیزم‌ها در محصولات جغرافیایی [ظرفیت عرض شمالی و طول جغرافیایی واقع شده است و ارتفاع آن از سطح دریا [این بر اساس امکان هواشناسی نزدیکی[این ایستگاه هواشناسی (خرما‌کاری)][فرزند کی الکالری و میکروبیوم‌ها و میکروبیوم‌ها در
درجه سانتی کراد دارای رژیم

Cropping Intensity Index

1- Crop Growth Rate
2- Relative Growth Rate
3- Neutral Detergent Fiber

Fig. 1. Trend of variation in crop growth rate of grass pea in two planting methods (Flat and furrow)

Fig. 2. Trend of variation in crop growth rate in four grass pea ecotypes
سرعت رشد محصول در اکثریت افرادی مختلف در میان رشد داده شده است. اکثریت افرادی دارای سرعت رشد بالا، توانستند مقدار ماده خشک 251 در اندام های خود داشته باشند. همانطور که دیده شد، در اکثریت افرادی، شکاف پایینی و مشهد با داشتن CGR بالا در اکثریت افرادی با شروع کندن CGR شد و در سرتاسر ماده خشک کند شده است. یافته های اقتصادی و همکاران (2001) در مورد ارزیابی شاخص‌های رشد در رده و یک‌لیاهای مشابه در CGR آزمایش کردند و در اکثریت افرادی با شروع کندن CGR، میزان زنوتیب‌های مورد بررسی اشاره دارد.

در مورد اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی، که در خصوصیات مختلفی اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی خاصیت دارد

(thermoperiod) یا CGR می‌باشد. در اکثریت افرادی با شروع کندن CGR، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی، که در خصوصیات مختلفی اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی عبور می‌کند.

Sousa و Zahmatkashi (1989) نشان دادند که در اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی، که در خصوصیات مختلفی اکثریت افرادی، میزان زنوتیب‌های مورد بررسی در اکثریت افرادی عبور می‌کند. توجه به مفهوم سرعت رشد نسبی که از اینجا افرادی وزن گیاه در واحد زرن خشک تعبیر شده است می‌توان انتظار داشت شرایط خانواده کرم‌های اثرگذار بر روی کشت کرم‌های افزایش بزرگ در CGR موجب برتری سرعت رشد نسبی در این تیمار شده است. یافته‌های ابراهیمی و زارع (2003) و اقتصادی و همکاران (2003) به ترتیب در مورد شرایط زیستی و کمیت می‌باشد.
Fig. 3. Trend of variation in relative growth rate of grass pea in two planting methods in two planting methods (Flat and furrow)

Fig. 4. Trend of variation in relative growth rate in four grass pea ecotypes
داده‌های وزن تخریبی از دست داده می‌تواند در مقایسه روش‌های کاشت، اکوپیپ‌روش کاشت، اکوپیپ‌روش کاشت در مطالعه‌ها در شکل ۷‌گانه در سطح P1D1 و P2D1 نشان داده شده است.

Fig. 5. Interaction of planting method × plant density on grass pea fresh weight (P1: flat method, P2: furrow method, D1: 110000 plant/ha and D2: 220000 plant/ha). Columns with similar letter(s) are not significantly different at 5% probability level.

وزن تخریبی اکوپیپ‌روش کاشت در میان ۸۲/۷۴ و ۸۲/۱۱ ترکیب P1D1 و P2D2 نشان داده است.

(۱) وزن تخریبی در روش کاشت بسیار زیاد بوده و از ترکیب P1E4 پیوند گرفته‌است (Jorge and Laure, 1999).

کمک‌کننده اکوپیپ، روش‌های کاشت بسیار مفید بوده و می‌تواند به بهبود کاشت بگردد (Jorge and Laure, 1999).
جدول ۱- تجزیه و اریب اسناد فیتی قمی و کیفیتی علوفه در مرحله پرداشت نهایی

<table>
<thead>
<tr>
<th>عناصر علوفه</th>
<th>درجه آزادی</th>
<th>DF</th>
<th>FW</th>
<th>DW</th>
<th>PH</th>
<th>CP</th>
<th>NDF</th>
<th>Ca</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>روش کشت (پ)</td>
<td>3</td>
<td></td>
<td>187.986</td>
<td>4.098</td>
<td>162.223</td>
<td>0.417</td>
<td>0.982</td>
<td>3.212</td>
<td>0.028</td>
</tr>
<tr>
<td>روش کشت (پ)</td>
<td>1</td>
<td></td>
<td>269.657</td>
<td>7.33</td>
<td>4778.265</td>
<td>46.819</td>
<td>53.582</td>
<td>1.188</td>
<td>0.137</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>1</td>
<td></td>
<td>81.563</td>
<td>5.784</td>
<td>907.515</td>
<td>36.693</td>
<td>1.113</td>
<td>4.171</td>
<td>0.159</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>3</td>
<td></td>
<td>197.735</td>
<td>21.039</td>
<td>2596.222</td>
<td>55.359</td>
<td>23.277</td>
<td>0.701</td>
<td>0.194</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>1</td>
<td></td>
<td>6.91</td>
<td>0.191</td>
<td>159.39</td>
<td>7.466</td>
<td>11.407</td>
<td>0.0462</td>
<td>1.473</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>3</td>
<td></td>
<td>15.312</td>
<td>0.127</td>
<td>118.432</td>
<td>57.718</td>
<td>9.016</td>
<td>0.304</td>
<td>0.34</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>4</td>
<td></td>
<td>122.626</td>
<td>23.382</td>
<td>13.382</td>
<td>6.279</td>
<td>0.622</td>
<td>0.154</td>
<td>0.0181</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>3</td>
<td></td>
<td>10.831</td>
<td>0.187</td>
<td>110.39</td>
<td>11.17</td>
<td>12.123</td>
<td>3.132</td>
<td>0.0096</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>1</td>
<td></td>
<td>25.824</td>
<td>0.9777</td>
<td>31.824</td>
<td>0.528</td>
<td>1.432</td>
<td>0.992</td>
<td>0.04</td>
</tr>
<tr>
<td>تراکم (ک)</td>
<td>3</td>
<td></td>
<td>18.97</td>
<td>18.37</td>
<td>6.21</td>
<td>3.10</td>
<td>2.83</td>
<td>1.09</td>
<td>8.66</td>
</tr>
</tbody>
</table>

FW: وزن فراخورشید DW: وزن خشک PH: ارتفاع CP: پروتئین جامد NDF: نیتروژن سوزنده دارای N Ca: کلسیوم P: فسفات

* and ** Significant at 5% and 1% probability levels, respectively.

ns: Non-Significant
Table 1: Interaction of planting method × plant density on grass pea dry weight (P₁: flat method, P₂: furrow method, D₁: 110000 plant/ha and D₂: 220000 plant/ha). Columns with the similar letter(s) are not significantly different at 5% probability level.

<table>
<thead>
<tr>
<th>Planting Method</th>
<th>Density</th>
<th>Dry Weight (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁D₁</td>
<td>a</td>
<td>6.2</td>
</tr>
<tr>
<td>P₁D₂</td>
<td>b</td>
<td>4.9</td>
</tr>
<tr>
<td>P₂D₁</td>
<td>b</td>
<td>5.8</td>
</tr>
<tr>
<td>P₂D₂</td>
<td>b</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Fig. 6: Interaction of planting method × plant density on grass pea dry weight (P₁: flat method, P₂: furrow method, D₁: 110000 plant/ha and D₂: 220000 plant/ha). Columns with the similar letter(s) are not significantly different at 5% probability level.
Table 2: Mean comparison of quantitative and quality traits of grass pea at final harvest stage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>FW (t/ha)</th>
<th>DW (t/ha)</th>
<th>PH (cm)</th>
<th>CP (%)</th>
<th>NDF (%)</th>
<th>OM (%)</th>
<th>Ca (%)</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>1</sub>D<sub>1</sub>E<sub>1</sub></td>
<td>32.38 a</td>
<td>6.56 ab</td>
<td>99.5 b</td>
<td>22.16 g</td>
<td>42.77 bc</td>
<td>91.64 ab</td>
<td>2.157 de</td>
<td>bcde</td>
</tr>
<tr>
<td>P<sub>1</sub>D<sub>1</sub>E<sub>2</sub></td>
<td>19.57 dc</td>
<td>3.31 d</td>
<td>70.5 f</td>
<td>29.78 a</td>
<td>40.65 de</td>
<td>90.12 b</td>
<td>2.33 bc</td>
<td>477 bcde</td>
</tr>
<tr>
<td>P<sub>1</sub>D<sub>1</sub>E<sub>3</sub></td>
<td>29.85 ab</td>
<td>5.67 ab</td>
<td>109.75 a</td>
<td>22.95 gf</td>
<td>41.95 dc</td>
<td>91.24 ab</td>
<td>1.82 f</td>
<td>435 cde</td>
</tr>
<tr>
<td>P<sub>1</sub>D<sub>1</sub>E<sub>4</sub></td>
<td>30.63 ab</td>
<td>5.91 ab</td>
<td>96.25 bc</td>
<td>20.62 h</td>
<td>40.12 c</td>
<td>92.05 ab</td>
<td>2.18 f</td>
<td>465 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>1</sub>E<sub>1</sub></td>
<td>28.61 ab</td>
<td>6.06 ab</td>
<td>112 a</td>
<td>26.03 c</td>
<td>42.31 dc</td>
<td>91.24 ab</td>
<td>2.18 f</td>
<td>465 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>1</sub>E<sub>2</sub></td>
<td>30.95 ab</td>
<td>4.91 bc</td>
<td>86.5 de</td>
<td>27.13 b</td>
<td>42.31 dc</td>
<td>91.24 ab</td>
<td>2.18 f</td>
<td>465 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>1</sub>E<sub>3</sub></td>
<td>27.17 abc</td>
<td>6.57 ab</td>
<td>110.75 a</td>
<td>25.02 dc</td>
<td>42 de</td>
<td>90.82 ab</td>
<td>2.50 bc</td>
<td>465 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>1</sub>E<sub>4</sub></td>
<td>31.83 a</td>
<td>6.75 a</td>
<td>109.5 a</td>
<td>20.65 h</td>
<td>40.79 ab</td>
<td>91.01 b</td>
<td>2.35 bc</td>
<td>497 bcd</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>1</sub></td>
<td>27.75 abc</td>
<td>5.77 ab</td>
<td>83.75 e</td>
<td>17.69 i</td>
<td>46.14 a</td>
<td>91.58 ab</td>
<td>2.47 bcd</td>
<td>476 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>2</sub></td>
<td>13.61 d</td>
<td>2.76 d</td>
<td>63.75 f</td>
<td>21.88 g</td>
<td>44.67 ab</td>
<td>92.12 a</td>
<td>2.53 b</td>
<td>532 ab</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>3</sub></td>
<td>24.32 abc</td>
<td>5.42 ab</td>
<td>84.25 e</td>
<td>22.08 g</td>
<td>43.02 bc</td>
<td>90.40 b</td>
<td>2.93 a</td>
<td>400 e</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>4</sub></td>
<td>27.43 abc</td>
<td>5.23 ab</td>
<td>87.75 cde</td>
<td>24.29 de</td>
<td>40.03 e</td>
<td>91.09 ab</td>
<td>2.36 bcd</td>
<td>465 bcde</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>5</sub></td>
<td>27.16 abc</td>
<td>5.55 ab</td>
<td>82.25 e</td>
<td>21.86 g</td>
<td>43.54 bc</td>
<td>90.72 b</td>
<td>1.85 f</td>
<td>51 bc</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>6</sub></td>
<td>22.91 bc</td>
<td>3.66 dc</td>
<td>66.75 f</td>
<td>25.56 c</td>
<td>42.91 bc</td>
<td>90.42 b</td>
<td>1.97 ef</td>
<td>405 de</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>7</sub></td>
<td>26.84 abc</td>
<td>5.89 ab</td>
<td>94 bcd</td>
<td>23.31 ef</td>
<td>43.16 bc</td>
<td>90.92 ab</td>
<td>2.37 ef</td>
<td>447 bcd</td>
</tr>
<tr>
<td>P<sub>2</sub>D<sub>2</sub>E<sub>8</sub></td>
<td>27.85 abc</td>
<td>6.04 ab</td>
<td>94 bcd</td>
<td>23.99 def</td>
<td>41.93 dc</td>
<td>90.88 ab</td>
<td>2.50 bc</td>
<td>486 bcde</td>
</tr>
</tbody>
</table>

Means in each column with the same letter are not significantly different at 5% probability level using Duncan's Multiple Range Test.

P₁: flat method, P₂: Forrow method, D₁:110000 Plant/ha; D₂: 220000 Plant/ha, E₁: Zanjan Ecotype, E₂: Ardabil Ecotype, E₃: Shahr-e-kord Ecotype, E₄: Mashhad Ecotype

FW: Fresh Weight DW: Dry Weight PH: Plant High CP: Crude Protein NDF: Neutral Detergent Fiber OM: Organic Matter Ca: Calcium P: Phosphorus
اثر متقابل تراکم × روش کاشت

وزن تربت (تن در هکتار)

Wet weight (t/ha)

Fig. 7. Interaction of planting method × plant density on crude protein percent in grass pea dried fodder (P1: flat method, P2: furrow method, D1: 110000 plant/ha and D2: 220000 plant/ha). Columns with the similar letter(s) are not significantly different at 5% probability level.
Fig. 8. Comparison of crude protein (%) in grass pea fodder with some other winter and summer forage crops (Adapted from experimental data of: Ghanee, 2004; Sharifi et.al, 2004; Eshaghamadi, 2004 and Mohammadi, 2004).

Shape-1: Comparison of crude protein (%) in grass pea fodder with some other winter and summer forage crops (Adapted from experimental data of: Ghanee, 2004; Sharifi et.al, 2004; Eshaghamadi, 2004 and Mohammadi, 2004).
درصد کلسیم موجود در علوفه خشک تهیه آزمایش گیاهان علوفه ای از عامل اصلی کلسیم (E) بطور معنی‌داری متفاوت کرد. همین‌طور اکثر کرته‌های موجب کرد. با این حال، ایجاد تفاوت تمام اثرهای مقابل (P×E×D×E - P×D×E) در دار (جدول ۳) در مقایسه با داده‌های علوفه خشک نشان داد. در مواردی که داده‌های علوفه خشک از نظر وزن خشک و کلتی‌های تمام موارد نشان دادند، یکی از نتایج منتشر شده است که در این آزمایش کلسیم اثری از دست نرفت. هکار ماده خشک و درصد بروتین خام حداکثر گلول کردم و در مقابل اکثر کرته‌های زنجان با داشتن کم‌ترین درصد بروتین خام در حداکثر گلول کردم. بروتین در هکار تنها درمورد P1D2E4 از نظر الگوهای مختلف حاصل از ترکیب T1T1T1 تراکم Y2Y2Y2 بوده در هکار در روشن کشت کرت. تبریک به سایر تیمارها بود.

شکل ۹ مقایسه درصد فسفر علوفه خشک با چند عنصر علوفه ای زمستانه و تابستانه (اقداسی از داده‌های اکتشاف، شریفی و همکاران، اسحاق‌احمدی، محمدی و بقیه).

Fig 9. Comparison of crude protein (%) in grass pea fodder with some other winter and summer forage crops (Adapted from experimental data of: Ghane, 2004; Sharifi et.al, 2004; Eshaghahmadi, 2004 and Mohammadi, 2004).
References

Growth analysis, forage yield and quality of four Grass pea (*Lathyrus sativus* L.) ecotypes as affected by plant density and planting method in double cropping system

Morsali¹, A., M. Aghaalikhani² and A. Ghalavand³

ABSTRACT

In order to study the effect of plant density and planting method on forage yield and quality of four grass pea (*Lathyrus sativus* L.) ecotypes, a field experiment was carried out during 2005 summer season in Hidaj town (Zanjan province, Iran). Treatments were arranged in a factorial experiment using Randomized Complete Blocks Design with four replications. Grass pea seeds of Zanjan, Ardabil, Shahr-e-Kord and Mashhad ecotypes (E₁-E₄) were sown in two planting methods (flat plots and furrowed plots) (P₁ and P₂) at two plant densities (110,000 and 220,000 p.ha⁻¹) (D₁ and D₂) on July 28, 2005. The former crop was wheat. Seven destructive samples were taken during grass pea growing season to study the trend of CGR and RGR. Different quantitative traits (plant height, forage fresh and dry yield) and quality traits [DM(%), crude protein(%), Ca(%), P(%) and NDF(%)] of forage were measured. Result showed that grass pea grown in flat plots had higher CGR and RGR. Also fresh and dry forage yield in flat plots with 220000 p.ha⁻¹ were significantly more than furrowed plots with 110/000 p.ha⁻¹. Mashhad ecotype by producing 29.4 t.ha⁻¹ fresh forage yield and 5.98 t.ha⁻¹ dry forage yield was the best forage producer among all ecotypes. However, there was no significant difference between Mashhad, Zanjan and Shahr-e-Kord ecotypes. The Ardabil ecotype produced the lowest forage yield as 21.7 t.ha⁻¹ and 2.66 t.ha⁻¹ for fresh and dry weight, respectively. Plant height in dense plots (220000 p.ha⁻¹) was significantly higher than 110,000 p.ha⁻¹. Crude protein percent was significantly affected by all factors. Main effects of planting method and plant density were significant for Ca% and NDF%. Phosphorus percent has not affected by any of experimental factors. The Ardabil, Zanjan and Shahr-e-Kord ecotypes were superior for CP%, NDF% and Ca%, respectively. It can be concluded that P₁D₂E₄ system (Mashhad ecotype sown in flat plots with 220000 p.ha⁻¹) was superior.

Keyword: Grass pea (*Lathyrus sativus* L.), Plant density, Forage yield, Planting pattern, Double cropping system

Received: July 2007.
1- Graduated M.Sc. student, Tarbiat Modares University, Tehran, Iran
2- Assistant Prof., Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran (Corresponding author)
3- Associated Prof., Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran