Effect of different levels of plant density and nitrogen fertilizer on grain and its yield components and some quality traits in two sesame (Sesamum indicum L.) cultivars

محمد جعفر بحرانی و غلامحسین بابایی

چکیده

به منظور بررسی اثر سطوح مختلف تراکم بوته و کود نیتروژن بر عملکرد دانه و اجزای آن و برخی صفات کیفیتی در دو رقم کنجد (Sesamum indicum L.) در سال ۱۳۸۲ میلادی و در مزرعه تحقیقاتی دانشگاه کشاورزی اصفهان شرایط واقع در منطقه کوهکانک آزمایش با استفاده از طرح کورهای دو بار خرد شده در قالب یک بلوک های كامل تصادفی به اجرا درآمد. نتایج نشان دهنده افزایش کود نیتروژن در سطح ۰/۰ و ۱/۰ کیلوگرم نیتروژن خالص در هکتار باعث افزایش فاکتورات اصلی، تراکم بوته در چهار سطح (۰/۰ و ۱/۰ و ۲/۰ و ۳/۰ کیلوگرم نیتروژن خالص در هکتار) یکی از این فاکتورات عمده در بهبود افزایش بوده است. اثر تراکم بوته و کاربرد کود نیتروژن بر تعداد روغن‌های سری در دو رقم کنجد دانه، وزن هزار دانه، عملکرد دانه، شاخص برداشت و درصد روغن و پروتئین دانه را بهبود بخشید و در اثر افزایش میزان کود نیتروژن عملکرد دانه افزایش یافت ولی واکنش ارقام به سطوح مختلف کود نیتروژن بسیار نبوده. اثر کیلوگرم نیتروژن در چهار سطح (۰/۰ و ۱/۰ و ۲/۰ و ۳/۰ کیلوگرم نیتروژن خالص در هکتار) باعث افزایش در مقدار گرمدر بوده است و وابستگی ارقام به جهت داشته باشد. ارقام دانه به شاخص برداشت همبسته می باشد و معنی دار (۰/۳۱) و با وزن هزار دانه و درصد روغن دانه (۰/۵۳) داشته در مجموع. دو رقم کنجد از نظر عملکرد دانه تفاوت معنی‌داری با هم نداشته‌اند. جنین اسباب شود در مقیاس دانه قدرت کود بدری یکی در این بخش بررسی نشده است. لیکن در مدل‌های کنجد با استفاده از درجه دارایی و برآورد ذره به نقطه که در کشت های تابستان کنجد احتمال ایجاد گرمدر بهتر بهترین بهترین ترجیح می‌شود.

واژه‌های کلیدی: تعداد کوپولا در بوته، وزن هزار دانه، عملکرد دانه، شاخص برداشت، درصد روغن دانه
دانه کنجد بیشتری تولید کرد. کامل و همکاران (Kamel et al., 1983) تراکم یک بینه در مترا مربع با دست اورده. (Bennet et al., 1996) ارقام محلی می‌تواند در عین حال، سایر انرژی‌مند و الکتریکی اثر افزایش عملکرد دانه کنجد با تغییرات کیله‌متری در منطقه به‌صورت معنایی مثبت افزایش تعداد کیله‌متری در بین مولکول‌های دانه و عملکرد دورکاری بیولولوژیک کرده است. ولی روی وزن هزار دانه تاثیری نداشت و تنها سطح و کیله‌متری نیترولی در مکاوان تفاه معنایی دارد. در حالی که افزایش تراکم بینه و سطح نیترولی عملکرد دانه افزوده شد و بالاترین عملکرد دانه در رنگ محلی زرقان در تراکم کیله‌متری در مترا مربع و کیله‌متری در هکار نیترولی دست‌آمد (Sinharoy et al., 1990) همکاری و همکاران و سنگ (Sing et al., 1992) و راماکریشنان و گزارش کردن (Ramakrishnan et al., 1996) که کاربرد با ترتیب همکاری و همکاران (Bennet et al., 1996) اظهار داشته‌که کاربرد و همکاری (Balsubramaniyan et al., 1995) دانه کنجد با دست اورده. درصد نسبت به شاها کردن. الاضطراب‌های همکاران کیلکروفی بینه در مترا مربع دست‌آمد و همکاران (Adebisi et al., 2005) مقایسه ارقام کنجد نشان داد که عملکرد برخی ارقام در تراکم بینه در هکار (دیلیپ و همکاران (Chungarol et al., 1991) با کاهش تراکم از بینه در مترا مربع تعداد کیله‌متری باعث افزایش عملکرد دانه شد. ولی وزن هزار دانه به‌صورت معنایی مثبت افزایش تعداد کیله‌متری در بین مولکول‌های دانه و عملکرد دورکاری بیولولوژیک کرده است. ولی روی وزن هزار دانه تاثیری نداشت و تنها سطح و کیله‌متری نیترولی در مکاوان تفاه معنایی دارد. در حالی که افزایش تراکم بینه و سطح نیترولی عملکرد دانه افزوده شد و بالاترین عملکرد دانه در رنگ محلی زرقان در تراکم کیله‌متری در مترا مربع و کیله‌متری در هکار نیترولی دست‌آمد (Sinharoy et al., 1990) همکاری و همکاران و سنگ (Sing et al., 1992) و راماکریشنان و گزارش کردن (Ramakrishnan et al., 1996) که کاربرد با ترتیب همکاری و همکاران (Bennet et al., 1996) اظهار داشته‌که کاربرد و همکاری (Balsubramaniyan et al., 1995) دانه کنجد با دست اورده. درصد نسبت به شاها کردن. الاضطراب‌های همکاران کیلکروفی بینه در مترا مربع دست‌آمد و همکاران (Adebisi et al., 2005) مقایسه ارقام کنجد نشان داد که عملکرد برخی ارقام در تراکم بینه در هکار (دیلیپ و همکاران (Chungarol et al., 1991) با کاهش تراکم از بینه در مترا مربع تعداد کیله‌متری باعث افزایش عملکرد دانه شد. ولی وزن هزار دانه به‌صورت معنایی مثبت افزایش تعداد کیله‌متری در بین مولکول‌های دانه و عملکرد دورکاری بیولولوژیک کرده است. ولی روی وزن هزار دانه تاثیری نداشت و تنها سطح و کیله‌متری نیترولی در مکاوان تفاه معنایی دارد. در حالی که افزایش تراکم بینه و سطح نیترولی عملکرد دانه افزوده شد و بالاترین عملکرد دانه در رنگ محلی زرقان در تراکم کیله‌متری در مترا مربع و کیله‌متری در هکار نیترولی دست‌آمد (Sinharoy et al., 1990) همکاری و همکاران و سنگ (Sing et al., 1992) و راماکریشنان و گزارش کردن (Ramakrishnan et al., 1996) که کاربرد با ترتیب همکاری و همکاران (Bennet et al., 1996) اظهار داشته‌که کاربرد و همکاری (Balsubramaniyan et al., 1995) دانه کنجد با دست اورده. درصد نسبت به شاها کردن. الاضطراب‌های همکاران کیلکروفی بینه در مترا مربع دست‌آمد و همکاران (Adebisi et al., 2005) مقایسه ارقام کنجد نشان داد که عملکرد برخی ارقام در تراکم بینه در هکار (دیلیپ و همکاران (Chungarol et al., 1991) با کاهش تراکم از بینه در مترا مربع تعداد کیله‌متری باعث افزایش عملکرد دانه شد. ولی وزن هزار دانه به‌صورت معنایی مثبت افزایش تعداد کیله‌متری در بین مولکول‌های دانه و عملکرد دورکاری بیولولوژیک کرده است. ولی روی وزن هزار دانه تاثیری نداشت و تنها سطح و کیله‌متری نیترولی در مکاوان تفاه معنایی دارد. در حالی که افزایش تراکم بینه و سطح نیترولی عملکرد دانه افزوده شد و بالاترین عملکرد دانه در رنگ محلی زرقان در تراکم کیله‌متری در مترا مربع و کیله‌متری در هکار نیترولی دست‌آمد (Sinharoy et al., 1990) همکاری و همکاران و سنگ (Sing et al., 1992) و راماکریشنان و گزارش کردن (Ramakrishnan et al., 1996) که کاربرد با ترتیب همکاری و همکاران (Bennet et al., 1996) اظهار داشته‌که کاربرد و همکاری (Balsubramaniyan et al., 1995) دانه کنجد با دست اورده. درصد نسبت به شاها کردن. الاضطراب‌های همکاران کیلکروفی بینه در مترا مربع دست‌آمد و همکاران (Adebisi et al., 2005) مقایسه ارقام کنجد نشان داد که عملکرد برخی ارقام در تراکم بینه در هکار (دیلیپ و همکاران (Chungarol et al., 1991) با کاهش تراکم از بینه در مترا مربع تعداد کیله‌متری باعث افزایش عملکرد دانه شد. ولی وزن هزار دانه به‌صورت معنایی مثبت افزایش تعداد کیله‌متری در بین مولکول‌های دانه و عملکرد دورکاری بیولولوژیک کرده است. ولی روی وزن هزار دانه تاثیری نداشت و تنها سطح و کیله‌متری نیترولی در مکاوان تفاه معنایی دارد. در حالی که افزایش تراکم بینه و سطح نیترولی عملکرد دانه افزوده شد و بالاترین عملکرد دانه در R.
نسبت دو هزار درصدی سی∫(Phyllody) گیاه بوته‌های آلوهه به بیماری‌های گل سیر (Fusarium oxysprum F. sp Sesame) که حذف کردند. همچنین در طول فصل رشد با ۱۸۳۱۲۵۷۰۳۹۰۶۱(،۷۵۵۳) بوته‌های سیر رشد کردند. اولین ابزار در آب و ابزار دروم زمانی که کیفیت به‌ارتباط با نرمال و رشد، انگاج و نیترژن شکل ارتوکه برای نزدیکی ۶۴۲۵۷۰۳۹۰۶۱(،۷۵۵۳) نیترژن در مزایا به صورت تسلیح در سطح درمانه‌های در حالت کردن حداکثر دو تا سه روز شده‌بود. در قالب بالکی کیفیت نهایی مورد تغییرات در طرح کردن دو تا خرد شده دوارک ابزار اجرای کردن. تراکم بوته به عنوان گیاه اصلی در چهار سرک در کجاهای و بین رشته‌های برداشت کیفیت در جهات ابی‌ماه پس از حذف رشد های خاصی از قسمت مادی و جاهایی از ماده‌های رشد و رشد، که به‌رغم پدیده‌های بالا بوده، اینکه شکل بوته‌ها در محل سر بوته‌های قرار داده شدند و پس از چند روز عملکرد دانه، عملکرد بوته‌های بلوژیک و شاخص برداشت اندازه کری گربه از برداشت بوته به صورت تصادفی انتخاب و تعداد کسب در بوته، وزن هزار دانه در صورت روش گرفتن با استفاده از روش سی∫(Phyllody) و درصد پروتئین با استفاده از روش کلیدال(Phyllody) اندازه‌گیری شدند. داده‌ات، با کمک نرم‌افزار MSTATE تجزیه آماری گرددن و میانگین‌ها با استفاده از آزمون چند دامداه‌ مانکین‌ها با استفاده از آزمون چند دامداه‌ دانکن مقایسه (Phyllody) داده‌ات در حالی که در حالت تکنیک بوته و گیاه‌های آلوهه محل آزمایش در جدول ازا امتیار. سه است که بذر را به صورت دستی در عمق ۲۰-۲۵сенتر انجام شد و برای سهولت جوانگیری روزی بذرها با خاک گیاه بوته‌های پوشانده شد. چه به به‌کار گرفته‌ای از الگاه‌های آلانی که بذرها قبل از کاشت با بیولی به

جدول ۱- گیاه‌های خاصی که استخراج پدیده آزمایی.

<table>
<thead>
<tr>
<th></th>
<th>ماده‌ای (درصد)</th>
<th>نیترژن (درصد)</th>
<th>P (mg/kg)</th>
<th>pH</th>
<th>طیف</th>
<th>آلودگی</th>
<th>رشد عایق</th>
<th>سی∫(Phyllody)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter (%)</td>
<td>2.0</td>
<td>0.2</td>
<td>26.5</td>
<td>7.5</td>
<td>Clayloam</td>
<td>Ramjerd fine mixed, mesic, Typic Calcixerpts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نتایج و بحث

عدد روز روزی تا رسیدگی دانه تحت تأثیر سطوح نیترات و رطوبت گرفتن (جدول 1). با افزایش سطوح نیترات معنی داری و وجود ابرداشت در دانه مشاهده شد. این تحقیق نشان داد که بر اساس جدول 1، سطوح مختلف تراکم بیشتر کاهش رطوبت گرفتن دانه را نشان می‌دهند. افزایش بار و علت انباشته شده رشد و رویشی معنی دار به دست که به دست آمده است. فرصت بیشتری برای رشد دانه دارد.

برداشت شد. کاربرد کود نیترات در عامل مهمی در دیروپسی کن‌رود (Kamal et al., 1983) و میکروبیوم م hät در مواد هیدروکربن در روانگر را تحت تأثیر قرار داده (Ramakrishnan et al., 1996). عامل مهم در روند ترشح بیشتر می‌باشد و در مجموع، تغییرات وزن هزار دانه بیشتر کود بوده با توجه این اینست، که این جزء عملکرد این بنا که باید و می‌تواند در کمتر تحت تأثیر عمیق فعالیت چرخ می‌گذرد (پارسی، 1996) و (Jouzdani et al.., 1999)

با افزایش تراکم بیشتر و سطوح کود نیترات

عمدلرد که در برابر صورت معنی‌داری کاهش یافته که با بیشتر ۴۷٪ به کاهش

رطوبت گرفتن (جدول 1، ۴). کود نیترات در هر که افزایش باعث کاهش به بیشتر

تغییرات از نظر افزایش بیشتر معنی دار دانه مثبت و (Jouzdani et al., 1999)

در سطوح موجود شده، دانه و پارسی، 1996) و (Adhikari et al., 2005)

نمره بیشتری را داشته و در تراکم کود فرعی در دانه و میکروبیوم در بیشتر می‌باشد و (Jouzdani et al., 1999)
Table 2. Effect of levels of plant density and nitrogen fertilizer on grain yield, yield components and some quality traits in two sesame cultivars

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Capsule per plant</th>
<th>1000-grain weight (g)</th>
<th>Harvest index (%)</th>
<th>Grain yield (kg/ha)</th>
<th>1000-grain weight (g)</th>
<th>Days to maturity</th>
<th>Protein content (%)</th>
<th>Oil content (%)</th>
<th>Nitrogen fertilizer (kg ha(^{-1}))</th>
<th>Capsule per plant</th>
<th>1000-grain weight (g)</th>
<th>Harvest index (%)</th>
<th>Grain yield (kg/ha)</th>
<th>1000-grain weight (g)</th>
<th>Days to maturity</th>
<th>Protein content (%)</th>
<th>Oil content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>118.2a</td>
<td>76.9a</td>
<td>3.7a</td>
<td>1084c</td>
<td>33.6a</td>
<td>53.8a</td>
<td>23.0b</td>
<td></td>
</tr>
<tr>
<td>20.8</td>
<td>118.5a</td>
<td>73.6a</td>
<td>3.6ab</td>
<td>1447b</td>
<td>25.9a</td>
<td>55.1a</td>
<td>23.9ab</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>119.1a</td>
<td>58.3b</td>
<td>3.6ab</td>
<td>1700b</td>
<td>26.4a</td>
<td>56.9a</td>
<td>24.6ab</td>
<td></td>
</tr>
<tr>
<td>41.6</td>
<td>119.5a</td>
<td>52.7b</td>
<td>3.5d</td>
<td>2001a</td>
<td>26.1a</td>
<td>54.3a</td>
<td>25.7a</td>
<td></td>
</tr>
<tr>
<td>Nitrogen fertilizer (kg ha(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>117.0c</td>
<td>40.3c</td>
<td>3.6a</td>
<td>1382b</td>
<td>25.0a</td>
<td>56.1a</td>
<td>23.2b</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>118.7b</td>
<td>70.0b</td>
<td>3.6a</td>
<td>1594ab</td>
<td>25.7a</td>
<td>55.2a</td>
<td>24.3ab</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>120.7a</td>
<td>86.0a</td>
<td>3.6a</td>
<td>1698a</td>
<td>25.7a</td>
<td>53.8a</td>
<td>25.3a</td>
<td></td>
</tr>
<tr>
<td>Cultivar</td>
<td></td>
</tr>
<tr>
<td>Darab-14</td>
<td>120.9a</td>
<td>63.8b</td>
<td>3.5a</td>
<td>1542a</td>
<td>24.7a</td>
<td>55.6a</td>
<td>24.2a</td>
<td></td>
</tr>
<tr>
<td>Local Zar</td>
<td>116.8a</td>
<td>67.8a</td>
<td>3.7a</td>
<td>1573a</td>
<td>26.3a</td>
<td>54.8a</td>
<td>24.4a</td>
<td></td>
</tr>
</tbody>
</table>

Means, in each column and treatment, followed by similar letters are not significantly different at 5% probability level- using Duncan’s Multiple Range Test.
Table 3. Interaction of plant density × nitrogen fertilizer × cultivar on grain yield of two sesame cultivars

<table>
<thead>
<tr>
<th>Plants density (Plant m²)</th>
<th>Cultivar</th>
<th>Nitrogen (kg ha⁻¹)</th>
<th>0</th>
<th>60</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6</td>
<td>Darab-14</td>
<td>825k</td>
<td>1318fj</td>
<td>1200jk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Zarghan</td>
<td>870j</td>
<td>979j</td>
<td>1309j</td>
<td></td>
</tr>
<tr>
<td>20.8</td>
<td>Darab-14</td>
<td>1104jijk</td>
<td>1477ei</td>
<td>1629bh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Zarghan</td>
<td>1272gk</td>
<td>1488di</td>
<td>1714ag</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>Darab-14</td>
<td>1507ci</td>
<td>1519bi</td>
<td>1957ae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Zarghan</td>
<td>1513bi</td>
<td>1912ae</td>
<td>1912ae</td>
<td></td>
</tr>
<tr>
<td>41.6</td>
<td>Darab-14</td>
<td>1995abc</td>
<td>2164a</td>
<td>1981abc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Zarghan</td>
<td>1968ad</td>
<td>1892ae</td>
<td>202ab</td>
<td></td>
</tr>
</tbody>
</table>

Means, in each column and treatment, followed by similar letters are not significantly different at 5% probability level using Duncan’s Multiple Range Test.

Table 4. Correlation coefficients between yield and its components and some quality traits in sesame

<table>
<thead>
<tr>
<th></th>
<th>Grain yield</th>
<th>1000-grain weight</th>
<th>Harvest index</th>
<th>Oil content</th>
<th>Grain protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsuls per plant</td>
<td>0.06*</td>
<td>-0.13**</td>
<td>-0.31*</td>
<td>0.23*</td>
<td>0.18*</td>
</tr>
<tr>
<td>1000-grain weight</td>
<td>-0.14**</td>
<td>-0.16**</td>
<td>0.09*</td>
<td>-0.15*</td>
<td>-0.86**</td>
</tr>
<tr>
<td>Harvest index</td>
<td>-0.31*</td>
<td>-0.16**</td>
<td>0.15*</td>
<td>0.19*</td>
<td>0.03</td>
</tr>
<tr>
<td>Oil content</td>
<td>0.23*</td>
<td>0.09*</td>
<td>-0.15*</td>
<td>-0.03</td>
<td>-0.86**</td>
</tr>
<tr>
<td>Grain protein</td>
<td>0.18*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and ** Significant at 5% and 1% probability levels, respectively.
References

Effect of different levels of plant density and nitrogen fertilizer on grain yield and its components and some quality traits in two sesame (Sesamum indicum L.) cultivars

Bahrani, M. J., and G. H. Babaei

ABSTRACT

A field experiment was conducted to evaluate the effect of different levels of plant density and nitrogen fertilizer (N) on grain yield and its components and some quality traits in two sesame (Sesamum indicum L.) cultivars-using split-split plot arrangement in randomized complete block design with three replications at Agricultural Research Station of Kushkak, College of Agriculture, Shiraz University in 2002 cropping season. The treatments included: plant density (16.6, 20.8, 33.0 and 41.6 plants m$^{-2}$) assigned to main plots, nitrogen fertilizer (N) (0, 60, and 120 kg ha$^{-1}$) and cultivars (CV) (Local Zarghan and Darab-14) were randomized in sub-plot and sub-sub plots, respectively. Both plant density and N fertilizer had significant effect on days to maturity, capsule number per plant, 1000-grain weight, grain yield, harvest index, oil and protein contents. Grain yield of cultivars increased with increased N rate, but CVs had different response to N levels. There was a significant interaction between N × plant densities × CV on grain yield, and the highest grain yield (2161 kg ha$^{-1}$) was produced by Darab-14. in 41.6 plants m$^{-2}$ and 60 kg N ha$^{-1}$, which was not significantly different from local Zarghan, at this plant density. Grain yield had negative and significant correlation (r=-0.31*) with harvest index and positive correlation (r=0.23) with 1000-grain weight and oil content. Grain oil content had negative and significant correlation (r=-0.86**) with grain protein content. In summary, two sesame cultivars had no significant yield differences, but it local Zarghan, was more responsive to N application. Of course Darab-14 is harvested later relative to local Zarghan and therefore, it is recommended early maturity local Zarghan be sown where there are early autumn rain and cold with less N fertilizer application.

Keywords: Capsule number per plant, 1000-grain weight, Grain yield, Harvest index, Oil content, Protein content.