Effect of different levels of plant density and nitrogen fertilizer on grain and its yield components and some quality traits in two sesame (Sesamum indicum L.) cultivars

Mohammad Jafar Bhardbandi and Ghalehmesin Bafandi

The effect of different levels of plant density and nitrogen fertilizer on grain and its yield components and some quality traits in two sesame (Sesamum indicum L.) cultivars was assessed. The cultivars were 'Maryam' and 'Red'. The experiment was conducted in a randomized complete block design with three replications. The treatments were four levels of plant density (75, 150, 225, and 255 plants m⁻²) and two levels of nitrogen fertilizer (0 and 120 kg N ha⁻¹). The results showed that the highest grain yield and its yield components were obtained at a plant density of 225 plants m⁻² and with the application of 120 kg N ha⁻¹. The quality traits, such as protein and oil content, were positively correlated with grain yield. The results indicate that proper management of plant density and nitrogen fertilizer can significantly improve grain yield and quality in sesame cultivation.
تغییرات محیطی و دوی در محیط‌های کوهستانی را می‌توان با استفاده از این روش‌ها بررسی کرد:

1. نمودارهای تغییرات محیطی
2. مدلسازی با استفاده از معادلات عددی
3. استفاده از نرم‌افزارهای محیطی

در اینجا مثال‌هایی از این روش‌ها در محیط‌های مختلف داده می‌شود:

1. مطالعه اثرات گرد و غبار در ناحیه‌های کوهستانی (Adebisi et al., 2005)
2. سنجش تغییرات آب و هوایی در مناطق مختلف (Ramakrishnan et al., 1996)
3. بررسی تغییرات فیزیولوژیک در گیاهان به دلیل ساحل کوهستانی (Bakhshandeh and Rahnema, 2006)

در ادامه، مواردی از مطالعات در حوزه‌های مختلف دیده می‌شود:

1. بررسی اثرات آب و هوایی در مناطق مختلف (Kamel et al., 1983)
2. بررسی تغییرات محیطی در مناطق مختلف (Sing et al., 1992)
3. بررسی تغییرات در محیط‌های مختلف (Chungarol et al., 1991)

در طول زمانی، تغییرات محیطی می‌توانند به وسیله‌های مختلفی ثبت شوند:

1. نمودارهای تغییرات محیطی
2. مدلسازی با استفاده از معادلات عددی
3. استفاده از نرم‌افزارهای محیطی

در اینجا مثال‌هایی از این روش‌ها در محیط‌های مختلف داده می‌شود:

1. مطالعه اثرات گرد و غبار در ناحیه‌های کوهستانی (Adebisi et al., 2005)
2. سنجش تغییرات آب و هوایی در مناطق مختلف (Ramakrishnan et al., 1996)
3. بررسی تغییرات فیزیولوژیک در گیاهان به دلیل ساحل کوهستانی (Bakhshandeh and Rahnema, 2006)

در ادامه، مواردی از مطالعات در حوزه‌های مختلف دیده می‌شود:

1. بررسی اثرات آب و هوایی در مناطق مختلف (Kamel et al., 1983)
2. بررسی تغییرات محیطی در مناطق مختلف (Sing et al., 1992)
3. بررسی تغییرات در محیط‌های مختلف (Chungarol et al., 1991)
Table 1. Soil physico-chemical properties of experimental site.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter (%)</td>
<td>2.0</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.2</td>
</tr>
<tr>
<td>P (mg/kg)</td>
<td>26.5</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>Texture</td>
<td>Clay loam</td>
</tr>
<tr>
<td>Soil order</td>
<td>Ramjerd fine mixed, mesic, Typic Calcixperpts</td>
</tr>
</tbody>
</table>
تاریخ و بهت

تعداد روز‌های تا رسیدگی دانه تحت تاثیر سطوح نیترات و رقم قرار گرفتن (جدول ۲).

با افزایش سطوح نیترات، بیشتر رسیدگی و امداد برداشت کردن در ثابت می‌شود. رابطه بین سطوح مختلف نیترات بیشتر از لحاظ تعداد روز‌های رسیدگی دانه تفاوت معنی‌داری وجود نداشت، ولی بین سطوح نیترات این تفاوت معنی‌دار بود و علت افزایش بهت ویژه سبب بهبود در نتایج این گروه می‌باشد.

فیصد بهتری برای پشتیبانی نسبت به زایش است که به نشان داده می‌شود.

رقم داراب (۲) در نتیجه رقم محیط زیست از اهمیت برداشت داشت. مطالعه برخی از تأثیر قرار دادن در میزان نیترات هیدروکربنر در وین را به تعداد تاثیر قرار داده و ۶/۶۱

باین‌البین، در منطقه شرکت احتمال بارش و سرمای پاییزی

در کشت‌های تابستان وجود دارد، برای کاهش در امر برداشت (۲) رقم محیط زیست که رقماً برداشت

که وادار تر است

کرد و کود نیترات کمتری هم داده شود.

با افزایش تراکم بیشتر و سطوح کود نیترات، عملکرد دانه به صورت معنی‌داری افزایش یافت و عملکرد دانه در برداشت بیشتر داشت. این به چکیده

پس‌روی اثر تراکم بیشتر بارش معنی‌داری وجود داشت. کاهش تعداد کپسول در بیشتر تراکم

گیاهان به علت افزایش رقابت بین دانه و کاهش هر بیشتر جهت استفاده از عناصر غذایی، جنگ و دی‌گر

بوده است و از طرفی، در تراکم با بالا بر علت رقابت

تعداد شاخه‌های فرعی و کپسول و در

(Adesoji et al., 2005)

رقم محیط زیست بانوز و وجود دارا بودن تعداد کمتر

های فرعی در بیشترینی و تعداد کپسول در بیانی

بیشتری داشت و در تراکم (۲) بیشترینی بود.

۲۴۰
Table 2. Effect of levels of plant density and nitrogen fertilizer on grain yield, yield components and some quality traits in two sesame cultivars

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days to maturity</th>
<th>Capsules per plant</th>
<th>1000-grain weight (g)</th>
<th>Grain yield (kg/ha)</th>
<th>Harvest index (%)</th>
<th>Oil content (%)</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant density (plant m⁻²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>118.2a</td>
<td>76.9a</td>
<td>3.7a</td>
<td>1084c</td>
<td>33.6a</td>
<td>53.8a</td>
<td>23.0b</td>
</tr>
<tr>
<td>20.8</td>
<td>118.5a</td>
<td>73.6a</td>
<td>3.6ab</td>
<td>1447b</td>
<td>25.9a</td>
<td>55.1a</td>
<td>23.9ab</td>
</tr>
<tr>
<td>33.0</td>
<td>119.1a</td>
<td>58.3b</td>
<td>3.6ab</td>
<td>1700b</td>
<td>26.4a</td>
<td>56.9a</td>
<td>24.6ab</td>
</tr>
<tr>
<td>41.6</td>
<td>119.5a</td>
<td>52.7b</td>
<td>3.5</td>
<td>2001a</td>
<td>26.1a</td>
<td>54.3a</td>
<td>25.7a</td>
</tr>
<tr>
<td>Nitrogen fertilizer (kg ha⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>117.0c</td>
<td>40.3c</td>
<td>3.6a</td>
<td>1382b</td>
<td>25.0a</td>
<td>56.1a</td>
<td>23.2b</td>
</tr>
<tr>
<td>60</td>
<td>118.7b</td>
<td>70.0b</td>
<td>3.6a</td>
<td>1594ab</td>
<td>25.7a</td>
<td>55.2a</td>
<td>24.3ab</td>
</tr>
<tr>
<td>120</td>
<td>120.7a</td>
<td>86.0a</td>
<td>3.7a</td>
<td>1698a</td>
<td>25.7a</td>
<td>53.8a</td>
<td>25.3a</td>
</tr>
</tbody>
</table>

Means, in each column and treatment, followed by similar letters are not significantly different at 5% probability level- using Duncan's Multiple Range Test.
Table 3. Interaction of plant density × nitrogen fertilizer × cultivar on grain yield of two sesame cultivars

<table>
<thead>
<tr>
<th>Plants density (Plant m⁻²)</th>
<th>Cultivar</th>
<th>Nitrogen (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Darab-14</td>
<td>Local Zarghan</td>
</tr>
<tr>
<td>16.6</td>
<td>825k</td>
<td>1318fj</td>
</tr>
<tr>
<td></td>
<td>870k</td>
<td>979jk</td>
</tr>
<tr>
<td></td>
<td>1200jk</td>
<td>1309fk</td>
</tr>
<tr>
<td>20.8</td>
<td>1104ijk</td>
<td>1477ei</td>
</tr>
<tr>
<td></td>
<td>1272gk</td>
<td>1488di</td>
</tr>
<tr>
<td></td>
<td>1629bh</td>
<td>1714ag</td>
</tr>
<tr>
<td>33.0</td>
<td>1507ci</td>
<td>1519bi</td>
</tr>
<tr>
<td></td>
<td>1513bi</td>
<td>1912ae</td>
</tr>
<tr>
<td></td>
<td>1957ac</td>
<td>1519bi</td>
</tr>
<tr>
<td>41.6</td>
<td>1995abc</td>
<td>2164a</td>
</tr>
<tr>
<td></td>
<td>1968ad</td>
<td>1892ae</td>
</tr>
<tr>
<td></td>
<td>2002ab</td>
<td>202ab</td>
</tr>
</tbody>
</table>

Means, in each column and treatment, followed by similar letters are not significantly different at 5% probability level using Duncan’s Multiple Range Test.

Table 4. Correlation coefficients between yield and its components and some quality traits in sesame

<table>
<thead>
<tr>
<th></th>
<th>Grain yield</th>
<th>Capsuls per plant</th>
<th>1000-grain weight</th>
<th>Harvest index</th>
<th>Oil content</th>
<th>Grain protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsuls per plant</td>
<td>0.06**</td>
<td>-0.15**</td>
<td>0.19**</td>
<td>0.18**</td>
<td>-0.15**</td>
<td>-0.15**</td>
</tr>
<tr>
<td>1000-grain weight</td>
<td>-0.14**</td>
<td>-0.03**</td>
<td>-0.03**</td>
<td>-0.03**</td>
<td>-0.03**</td>
<td>-0.03**</td>
</tr>
<tr>
<td>Harvest index</td>
<td>-0.31*</td>
<td>0.19**</td>
<td>0.15**</td>
<td>0.10**</td>
<td>0.10**</td>
<td>0.10**</td>
</tr>
<tr>
<td>Oil content</td>
<td>-0.23**</td>
<td>-0.16**</td>
<td>0.15**</td>
<td>0.18**</td>
<td>0.18**</td>
<td>0.18**</td>
</tr>
<tr>
<td>Grain protein</td>
<td>-0.86**</td>
<td>-0.86**</td>
<td>-0.86**</td>
<td>-0.86**</td>
<td>-0.86**</td>
<td>-0.86**</td>
</tr>
</tbody>
</table>

* and ** Significant at 5% and 1% probability levels, respectively.

با کاربرد کیلوگرم نیترزون در هکتار حاصل کردد.
کمترین و کبیرترین میزان بسته‌بندی بادام‌های دانه در میزان ۱۰۰۰ کیلوگرم نیترزون در هکتار حاصل کرده‌اند.
کواندادن، در مجموع در دو روش درصد روغنی و جنین حساسیت اغلب در دانه‌های روغنی وجود دارد (Bennet et al., 1996; Sinharoy et al., 1990).

از لحاظ‌درصد پروتئین بین دو روش کنجکاد اختلاف

در مجموع، این پژوهش نشان داد که بالاترین کندaje از لحاظ اصلاح کننده همبستگی در کننده از لحاظ میزان روغن دانه با هم تفاوت ندارند، ولی در مجموع در دو روش درصد روغنی و جنین حساسیت اغلب در دانه‌های روغنی وجود دارد (Bennet et al., 1996; Sinharoy et al., 1990).
References

Effect of different levels of plant density and nitrogen fertilizer on grain yield and its components and some quality traits in two sesame (Sesamum indicum L.) cultivars

Bahrani, M. J¹, and G. H. Babaei²

ABSTRACT

A field experiment was conducted to evaluate the effect of different levels of plant density and nitrogen fertilizer (N) on grain yield and its components and some quality traits in two sesame (Sesamum indicum L.) cultivars-using split-split plot arrangement in randomized complete block design with three replications at Agricultural Research Station of Kushkak, College of Agriculture, Shiraz University in 2002 cropping season. The treatments included: plant density (16.6, 20.8, 33.0 and 41.6 plants m⁻²) assigned to main plots, nitrogen fertilizer (N) (0, 60, and 120 kg ha⁻¹) and cultivars (CV) (Local Zarghan and Darab-14) were randomized in sub-plot and sub-sub plots, respectively. Both plant density and N fertilizer had significant effect on days to maturity, capsule number per plant, 1000-grain weight, grain yield, harvest index, oil and protein contents. Grain yield of cultivars increased with increased N rate, but CVs had different response to N levels. There was a significant interaction between N × plant densities × CV on grain yield, and the highest grain yield (2161 kg ha⁻¹) was produced by Darab-14, in 41.6 plants m⁻² and 60 kg N ha⁻¹, which was not significantly different from local Zarghan, at this plant density. Grain yield had negative and significant correlation (r = -0.31) with harvest index and positive correlation (r = 0.23) with 1000-grain weight and oil content. Grain oil content had negative and significant correlation (r = -0.86) with grain protein content. In summary, two sesame cultivars had no significant yield differences, but it local Zarghan, was more responsive to N application. Of course Darab-14 is harvested later relative to local Zarghan and therefore, it is recommended early maturity local Zarghan be sown where there are early autumn rain and cold with less N fertilizer application.

Keywords: Capsule number per plant, 1000-grain weight, Grain yield, Harvest index, Oil content, Protein content.

Received: May 2007
1- Professor, Shiraz University, Shiraz, Iran (Corresponding author)
2- Former M.Sc., Student, College of Agriculture, Shiraz University, Shiraz, Iran