Stability of grain yield in promising winter and facultative wheat (Triticum aestivum L.) lines

颚 يا بناين، تونيب ايدي، گنبد، ژيژيداي دانه در لاین های امید بخش گندم (Triticum aestivum L.)

چکیده

کرویالي، آمیز، پایداري سر خاص، گنبد، ژيژيداي دانه در لاین های امید بخش گندم

پایداري عملکرد دانه در لاین های امید بخش گندم (Triticum aestivum L.)
ارقام جدید گیاهان زراعی تولید شده، جهت ارسال به سازگاری عمومی به کمک منابع خودکفا، (Hill, 1976; Westcott, 1986) محققین‌زاده اثر متفاوت زنوتیب در محیط یا راکی از این مطلب در علم اصلاح ارقام به‌دست آمده و انگراژ از عوامل مختل این امر که کنده‌بازدهی باده (Becker, 1988; Kang, 1998; Ceccarelli, 1989). در اصلاح نباتات سازگاری (Wide adaptation) به دو مفهوم عمومی و بکار می‌روید (Specific adaptation) و در سازگاری عمومی هدف به دست اوردن ارقامی است که در ارتفاع های خاص عملکرد بالاتری پاشند و در سازگاری خصوصی هدف تولید ارقامی است که در محیط های مختلف عملکرد بالایی داشته باشند (Paolo, 2002). بعضی از متخصصین اصلاح نباتات سازگاری عمومی و پایدار عملکرد را به یک مفهوم به کار می‌برند. در حالتی که بیشتر متخصصین سازگاری عمومی را به مفهوم عدم تغییر در میانه‌های مختلف و پایداری عملکرد را به‌عنوان تغییر در طول زمان (Lin and Binns, 1988; Barah et al., 1981) لیو و همکاران (1986) در مطالعه‌های مختلف تعبیر پایداری را به سه نوع تقسیم بندی نمودند. پایداری‌های واریانس معیطی (S) و ضریب تغییرات (C) از جمله پایداری‌های پایداری نوع محسب می‌کردند. شامل دو متغیر اجزای افزایش یافته و بر عکس از عملکرد ها کاهش خواهد یافته. در این سناریو رشد یا شکل فوق، ارقامی که در این شرایط خط رکرنسیون کوچکتر از پیش بگیرند، (b<1). از نظر پایداری در سطح بالاتر از متوسط قرار داشته و با تغییراتی که با این معیار متفاوت می‌باشد.
مواد و روایت ها
تحقیق حاضر به منظور تعیین پایداری عملکرد (Zn) از تغییرات نسبی کندم زمستان و پاییز (جدول ۱) با استفاده از پارامترهای مختلف پایداری، طی دو سال زراعی (۱۳۴۳ – ۱۳۴۳) در اقلیم سرد کشور به مورد اجرا کدکشانده شد. زنگیتیم ها در قالب طرح یک‌کل‌های کامل تصادفی با نرخ تکرار مورد بررسی قرار گرفتند. انتقال کمی صفت عملکرد دانه در

میزان شامل کرج، زنجان، اردبیل، اراک، میاندوآب، چهل‌کرد، مشهد، همدان، اقلید و تیرم انجام گرفت و در هر کیلویی میزان میزان از رقم کندم شهرهای عنوان نشان دهنده استفاده کرد. در این امکان‌ها، به‌طور همزمان، مرتبه پایداری در یک دست که با سمات

\[R^2 \] دو مرتبه با تراکم دانه در هر متر مربع

کشا و گردن و در موقع بروزتاده به حذف نمی‌در

بود. عملیات به‌همین طرح اصول متعارف صورت

میزان از آزمون‌های کشا مقدماتی ناسازی کرد. پنالتی از منابع سولفات پاساژ، کناری مسیره از سرفصل آمیزی و همچنین کرد از منابع ورود در هر میلی‌متر مربع استفاده گردید. ابزار به‌صورت نشانی شامل یک

پنالتی آبیاری پاییز و [۱] نتیجه آبیاری به‌های انجام

بود. در این آزمایش قابل از کشا که برای سرعت مناسب ضد

مراجعه های زراعتی لازم در زمان داشت

از جمله مبارزه به خلقت های هر و آفات به موقع انجام

پس از بروزتاده عملکرد و جمع اوری داده های دو ساله استخراج‌ها از انتظار پایدار برای از مجموعات

در تجربه مربی از آزمون F برای عنوان دار بودن منابع

از جمله پارامترهای پایداری نوع سی توان به میان‌انکار مرتبه‌های از خصوصیت (Sd) که شاهد اصل و راسل (Eberhart and Russell, 1966) پارامترهای ضریب رگرسیون فیلی و ویلکسون (b) و میان‌انکار مرتبه هر زنگیتیم در تعیین زنگیتیم‌ها با عملکرد ابزار استفاده کردند. لازم به ذکر است که این مدل‌ها داشته‌اند، زنگیتیم مطابق است. این مدل‌ها در مطالعه آماری بتواند یک دارای تفاوت در میان‌انکار مشاهده شود. بنابراین میان‌انکار مرتبه از خصوصیت رگرسیون را نیز دقتی بیشتر یافت که Pinthus (1973) پیشنهاد استفاده از معیار \(R^2 \) با به‌طور یک‌پارامتر میان‌انکار میان‌انکار از خصوصیت رگرسیون مطلوب نمود. هر دوی این پارامترها در واقع برای خصوصیت رگرسیون را با داده

های موجود اندازه‌گیری می‌کردند.

دو سال پس از تقسیم بندی لین و همکاران (Lin and Binns, 1986) پارامتر بیشتری را مطرح کردند و آنها پارامتر پایداری نوع چهار نام‌گذاری نمودند، این شاخه

پایداری که به نام واریانس مجموعی (MSY) پایداری که به نام واریانس بین سال‌ها در

در دو میانکار مشاهده شد، این دو محقق هم‌چنین

پیمان نمودند که براساس این روش هر رقم

واریانس کمتری بین سال‌ها داشته باشد، پایدارتر است. علیکه پیچرت نوع به شدن، روش‌های دیگری نیز

بر عملکرد از مجموعه چهار دارد که از جمله این می‌توان روش کانکس (Kang, 1993) است. این روش که از اندیشی در روش

وسیله‌ای بیشتری از اندیشی در روش

پارامترهای کانکس (روش بیشتر) و پارامترهای کانکس

بتواند امیده است، روش کنترل هم‌مان

برای عملکرد و پایداری نامیده می‌شود.

هدف این تحقیق مطالعه پایداری عملکرد دانه و
جدول ۱- شجره زنوتیپ های گندم

<table>
<thead>
<tr>
<th>شماره</th>
<th>کد</th>
<th>شماره</th>
<th>کد</th>
<th>شجره</th>
<th>Pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C-80-1</td>
<td>C-73-20 (Shahryar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C-80-2</td>
<td>C-75-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C-80-3</td>
<td>Vee "s"/Nac/1-66-23/3/Vee "s"/Snb"s"/1-66-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C-80-4</td>
<td>Shi#4414/Crow"s"/Kvz/6/1-68-120/5/Gds/Anza...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C-80-5</td>
<td>Shi#4414/Crow"s"/V82187/T.AestxTi/(La(Fr-KadsGh))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C-80-6</td>
<td>Bow"s"/Crow"s"/"Kie"s"/Vee"s"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C-80-7</td>
<td>Ttx52A4793-7/CB809/Vee"s"/3/Shi#4414/Crow"S"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C-80-8</td>
<td>DH-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C-80-9</td>
<td>Spb*2/Tjb338.251/Buc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C-80-10</td>
<td>Omid/H7/4P839/Omid/Tdo/5/CWAHA81-1473</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C-80-11</td>
<td>Gds/4/Anza/3/Pi/Nar/Hys/5/1-66-75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C-80-12</td>
<td>Gds/4/Anza/3/Pi/Nar/Hys/5/1-66-75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>C-80-13</td>
<td>(Rsh*2-10120)*2/4/Anza/3/Pi/Nar/Hys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>C-80-14</td>
<td>Omid/Shi#4414/Crow"s"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C-80-15</td>
<td>Omid/Shi#4414/Crow"s"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C-80-16</td>
<td>Jup/4/ClIF/3/I14.53/ Odin/Cl 13431/...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>C-80-17</td>
<td>Batera/Buc/To173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>C-80-18</td>
<td>DH4-263-1557F3 Vee"s"/Nac/1-66-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>C-80-19</td>
<td>DH4-168-1577F3 Vee"s"/Nac/1-66-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>C-80-20</td>
<td>DH4 Vee"s"/Nac/1-66-22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدوله مورد از امید رضایی میانکین مربوط به فرض ثابت بودن زنوتیپ و تصادفی بودن اثر سال و مکان

ارجاع‌های منبع: Kang, 1993 (اوجته تجربه)

*مختصره هم‌مانی برابر (MSV$_{Y/L}$) و روش کریش هم‌مانی برابر (Kang, 1993 (YS))

مختصره بی‌راز (MSV$_{L}$) و پایداری (US)
جدول ۲- تجزیه و ارایه مربوط به میانگین سطح عاملات دانه در آزمون‌های ثبت

Table 2. Combined analysis of variance of grain yield (YLD) for bread wheat genotypes

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>درجه آزادی</th>
<th>سطح سنجش</th>
<th>YLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td>165635101ns</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td>121902750ns</td>
</tr>
<tr>
<td>(Y×L)</td>
<td></td>
<td></td>
<td>116681780ns</td>
</tr>
<tr>
<td>Rep (Y×L)</td>
<td></td>
<td></td>
<td>1608571</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td>6224043ns</td>
</tr>
<tr>
<td>(G×L)</td>
<td></td>
<td></td>
<td>1786335*</td>
</tr>
<tr>
<td>(G×Y)</td>
<td></td>
<td></td>
<td>2073232ns</td>
</tr>
<tr>
<td>(G×L×Y)</td>
<td></td>
<td></td>
<td>1353056**</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td>760</td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% probability levels, respectively.
ns: Non- significant.

جدول ۳- پارامترهای مختلف پاپاداری برای صفت عملکرد دانه در آزمون‌های ثبت

Table 3. Stability parameters for grain yield (YLD) in 10 locations and two years

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Class</th>
<th>%Y</th>
<th>S^2</th>
<th>CV^2</th>
<th>W^2</th>
<th>σ^2</th>
<th>h^2</th>
<th>$S^2 d_i$</th>
<th>R^2</th>
<th>MSy/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>6670</td>
<td>2614734</td>
<td>24.2</td>
<td>5404860</td>
<td>286464</td>
<td>1.00ns</td>
<td>300269ns</td>
<td>89</td>
<td>2502110</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>6091</td>
<td>2368802</td>
<td>25.3</td>
<td>22034699</td>
<td>1258958</td>
<td>0.76*</td>
<td>108115ns</td>
<td>57</td>
<td>2157897</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>6818</td>
<td>2356752</td>
<td>22.5</td>
<td>9674192</td>
<td>536133</td>
<td>0.89ns</td>
<td>506644**</td>
<td>79</td>
<td>2809330</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>7157</td>
<td>4218398</td>
<td>28.7</td>
<td>13260140</td>
<td>745837</td>
<td>1.25*</td>
<td>577390ns</td>
<td>87</td>
<td>334802</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>6336</td>
<td>275570</td>
<td>26.2</td>
<td>6190863</td>
<td>332429</td>
<td>1.02ns</td>
<td>342890*</td>
<td>88</td>
<td>2081736</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>7156</td>
<td>3161141</td>
<td>24.8</td>
<td>7582689</td>
<td>413822</td>
<td>1.09*</td>
<td>400503ns</td>
<td>88</td>
<td>3336755</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>6843</td>
<td>2540070</td>
<td>23.3</td>
<td>8011709</td>
<td>438911</td>
<td>0.95ns</td>
<td>439856*</td>
<td>84</td>
<td>2136662</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>6667</td>
<td>2800764</td>
<td>25.1</td>
<td>13767873</td>
<td>775259</td>
<td>0.94ns</td>
<td>757384ns</td>
<td>74</td>
<td>3098580</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>6488</td>
<td>3190638</td>
<td>27.5</td>
<td>8369389</td>
<td>459828</td>
<td>1.09ns</td>
<td>443334*</td>
<td>87</td>
<td>2283098</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>6777</td>
<td>2173645</td>
<td>21.8</td>
<td>9356112</td>
<td>517531</td>
<td>0.86ns</td>
<td>471650ns</td>
<td>79</td>
<td>1558416</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>7025</td>
<td>4214892</td>
<td>29.2</td>
<td>14894081</td>
<td>841389</td>
<td>1.24*</td>
<td>691451ns</td>
<td>65</td>
<td>1700508</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>6581</td>
<td>3704245</td>
<td>29.2</td>
<td>7280108</td>
<td>396128</td>
<td>1.21*</td>
<td>294194ns</td>
<td>93</td>
<td>1927863</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>6518</td>
<td>2402226</td>
<td>23.8</td>
<td>8902487</td>
<td>491004</td>
<td>0.91ns</td>
<td>476495ns</td>
<td>81</td>
<td>2249663</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>6264</td>
<td>2524311</td>
<td>25.4</td>
<td>34773887</td>
<td>173542</td>
<td>1.00ns</td>
<td>192989ns</td>
<td>93</td>
<td>2141817</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>6597</td>
<td>2849180</td>
<td>25.6</td>
<td>6143436</td>
<td>329656</td>
<td>1.04ns</td>
<td>337125*</td>
<td>89</td>
<td>2563622</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>6569</td>
<td>3204852</td>
<td>27.3</td>
<td>9420818</td>
<td>521315</td>
<td>1.08ns</td>
<td>507448ns</td>
<td>85</td>
<td>3330309</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>6830</td>
<td>3223089</td>
<td>26.3</td>
<td>11487851</td>
<td>642194</td>
<td>1.06*</td>
<td>629042ns</td>
<td>81</td>
<td>3020864</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>6093</td>
<td>2516917</td>
<td>26.0</td>
<td>12607706</td>
<td>707683</td>
<td>0.90ns</td>
<td>674343ns</td>
<td>75</td>
<td>2613380</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>6164</td>
<td>2144909</td>
<td>23.8</td>
<td>4436751</td>
<td>229849</td>
<td>0.91ns</td>
<td>226323ns</td>
<td>90</td>
<td>1714799</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>6874</td>
<td>1853821</td>
<td>19.8</td>
<td>10109024</td>
<td>561088</td>
<td>0.78*</td>
<td>445476**</td>
<td>77</td>
<td>1459928</td>
</tr>
</tbody>
</table>

Mean 6626

LSD(5%)= 420 kg/ha LSD(1%)= 547 kg/ha

* and **: Significant at 5% and 1% probability level, respectively.
ns: Non- significant.
C: Not significantly different compared to the check cultivar (no.1)
B: Higher than check cultivar (no.1) at LSD(0.05)
D: Lower than check cultivar (no.1) at LSD(0.05)
E: Lower than check cultivar (no.1) at LSD(0.01)

S^2_i: values tested against one.
اراییس مربوط به دلیل معنی‌داری داشت اثر متقابل
ژنوتیپ‌ها و میزان بار کلنی که در امکان
تغییری پایداری به تغییرات بار کلنی‌ها با عملکرد
رال و ابرهارت (1966) گزارش کردند که
نتایج حاصل از برش‌های عملکرد دانه‌ی
ژنوتیپ‌ها با استفاده از پارامتر ضرب تغییرات
محیطی (CV) ۳-حاصلی مشابه پارامتر واریانس
محیطی (S۲) بود. بر اساس این پارامتر ژنوتیپ‌های
شماره ۲۷۰ ژنوتیپ‌های
یا
۳۱ و ۷ از لحاظ عملکرد دانه‌ی
کیلوگرم در هکتار (به عنوان مطلوب‌ترین ژنوتیپ‌ها)
بستری کیفیت زندگی و همکاران (۱۳۷۵)
پایداری ۲۰ ژنوتیپ گندم بیماری را به
پایداری در هزار منطقه طی سال‌های پارسی گردید و
روش ضرب تغییرات محیطی (CV) را روشنی مناسب
جهت کنترل بیماری دانستند و بر اساس آن ارقام تجنیب
و ارتکز را به عنوان ارقام پر مشروح و دارای سازگاری
بیشتر معرفی و توییص نمودند.
نتایج حاصل از پارامتر عملکرد دانه‌ی
ژنوتیپ‌ها با استفاده از دو پارامتر اکووالانس (W۲) و
واریانس‌پایداری (S۲) هم تحقیقاتی بود که این
موضوع حاکی از تنها این دو پارامتر در تبعیض
ژنوتیپ‌های حاصل از استفاده از این روش پایداری ژنوتیپ‌ها ایجاد

از این نویسنده‌ها و همکاران (20۰۵) با استفاده از
ژنوتیپ گندم بیماری را به
پایداری در هزار منطقه طی سال‌های پارسی گردید و
روش ضرب تغییرات محیطی (CV) را روشنی مناسب
جهت کنترل بیماری دانستند و بر اساس آن ارقام تجنیب
و ارتکز را به عنوان ارقام پر مشروح و دارای سازگاری
بیشتر معرفی و توییص نمودند.
نتایج حاصل از پارامتر عملکرد دانه‌ی
ژنوتیپ‌ها با استفاده از دو پارامتر اکووالانس (W۲) و
واریانس‌پایداری (S۲) هم تحقیقاتی بود که این
موضوع حاکی از تنها این دو پارامتر در تبعیض
ژنوتیپ‌های حاصل از استفاده از این روش پایداری ژنوتیپ‌ها ایجاد

از این نویسنده‌ها و همکاران (20۰۵) با استفاده از
ژنوتیپ گندم بیماری را به
پایداری در هزار منطقه طی سال‌های پارسی گردید و
روش ضرب تغییرات محیطی (CV) را روشنی مناسب
جهت کنترل بیماری دانستند و بر اساس آن ارقام تجنیب
و ارتکز را به عنوان ارقام پر مشروح و دارای سازگاری
بیشتر معرفی و توییص نمودند.
نتایج حاصل از پارامتر عملکرد دانه‌ی
ژنوتیپ‌ها با استفاده از دو پارامتر اکووالانس (W۲) و
واریانس‌پایداری (S۲) هم تحقیقاتی بود که این
موضوع حاکی از تنها این دو پارامتر در تبعیض
ژنوتیپ‌های حاصل از استفاده از این روش پایداری ژنوتیپ‌ها ایجاد

از این نویسنده‌ها و همکاران (20۰۵) با استفاده از
ژنوتیپ گندم بیماری را به
پایداری در هزار منطقه طی سال‌های پارسی گردید و
روش ضرب تغییرات محیطی (CV) را روشنی مناسب
جهت کنترل بیماری دانستند و بر اساس آن ارقام تجنیب
و ارتکز را به عنوان ارقام پر مشروح و دارای سازگاری
بیشتر معرفی و توییص نمودند.
علب‌کردن پایدار عمل نمودند. دست‌آوردهای زراعی لاین هایی که تاکنون مورد استفاده قرار گرفته‌اند از آغاز ساخت‌پایداری (ایباداری بالا) تا تاکنون مورد استفاده نشده‌اند که با این بررسی و تدوین با عملکردهای لاینی استفاده از جدول یا روش‌هایی استفاده از

نوبتی‌باداری این عملکرد زنوتیبی‌ها

با استفاده از روش گروه‌نامه برای عملکرد و

ایباداری در چندین باره شده است. بر اساس این

روش، زنوتیب شماره (Y1) و در شماره (Y2)

بروتین‌بندی زنوتیب از نظر پایداری و عملکرد بود. پس از

زنوتیب مذکور، زنوتیبی‌های شماره (Y3) و (Y4)

نیز با استفاده از همین روش در کار روش های

ایباداری نیز، اعدادی از هم‌ساخته‌های دیگر داشته ای

دارای عملکردها و پایداری بالا و معرفی کرده است.

بطور کلی بر اساس نتایج حاصله از بررسی

ایباداری عملکرد (Y1) زنوتیبی‌ها تحت مطالعه در

صفت عملکردهای زنوتیبی‌های شماره (Y1) و

ایباداری اکثر پارامترها (Y2) بعنوان زنوتیبی‌های

ایباداری شناسایی کرده که در هن این با عملکرد

زنوتیبی‌های شماره (Y3) و (Y4) از رقم به اب این

نظر را با برتری‌های هم‌سانی برای عملکردها و پایداری

Y1 و Y2 زنوتیبی‌های شماره (Y3) و (Y4)

عنوان (Y5) و زنوتیبی‌های شناسایی شده‌اند.

این این است که در مورد عملکرد، روش

رگسیون‌ی اگرت و راست قادیر به گزینش توام

زنوتیبی‌های پایدار با میانگین عملکرد بالا نکرده،

ثبت شده و همکاران (Y1) نیز از بین سه روش پایداری

Mورد استفاده (Y1) روش ضریب تغییرات محیطی

روش رگسیون و روش کارگزاری هم‌سانی برای

عملکردها، و روش سوم را مناسب تر از بقیه

روش‌ها کارگزاری کرده‌اند. در ارتباط

عملکردهای معمولی (Y1) و از روش اکو‌وایس و ارتباط

به‌صورت تقریبا مشابه در تجربه‌ی زنوتیبی‌های دارای
Table 4. Stability analysis of grain yield (YLD) using simultaneous selection for yield and stability

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Mean yield (kg/ha)</th>
<th>Yield rank</th>
<th>Adjustment</th>
<th>Adjusted</th>
<th>Stability variance</th>
<th>Stability rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6670</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>286464**</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6091</td>
<td>1</td>
<td>-3</td>
<td>-2</td>
<td>1258985**</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6818</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>536133**</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7157</td>
<td>20</td>
<td>2</td>
<td>22</td>
<td>745873**</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>6336</td>
<td>5</td>
<td>-2</td>
<td>3</td>
<td>332429**</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7156</td>
<td>19</td>
<td>2</td>
<td>21</td>
<td>413822**</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>6843</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>438911**</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>6667</td>
<td>11</td>
<td>-1</td>
<td>10</td>
<td>775529**</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>6488</td>
<td>6</td>
<td>-1</td>
<td>5</td>
<td>459828</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>6777</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>517531**</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7025</td>
<td>18</td>
<td>2</td>
<td>20</td>
<td>841389**</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>6581</td>
<td>9</td>
<td>-1</td>
<td>8</td>
<td>396128</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>6518</td>
<td>7</td>
<td>-1</td>
<td>6</td>
<td>491004</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>6264</td>
<td>4</td>
<td>-2</td>
<td>2</td>
<td>173542**</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>6597</td>
<td>10</td>
<td>-1</td>
<td>9</td>
<td>329656**</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>6569</td>
<td>8</td>
<td>-1</td>
<td>7</td>
<td>521315**</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>6830</td>
<td>15</td>
<td>1</td>
<td>16</td>
<td>642194**</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>6093</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td>707683**</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>6164</td>
<td>3</td>
<td>-2</td>
<td>1</td>
<td>229849**</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>6874</td>
<td>17</td>
<td>1</td>
<td>18</td>
<td>561088**</td>
<td>0</td>
</tr>
</tbody>
</table>

Mean of check = 6670 Kg/ha
LSD 0.05 = 270 Kg/ha

** Significant at 1% probability level
ns: Non-significant

(1): Among the genotypes the highest and the lowest yield received 20 and 1, respectively
(2): Comparison of the genotypes with the mean of check cultivar no. 1 (6670 kg/ha) using LSD value
(3): Comparison of the genotypes with the check cultivar (no. 1)
-1: Mean yield less than check mean yield
-2: Mean yield less than check mean yield by 1 LSD
-3: Mean yield less than check mean yield by 2 LSD
1: Mean yield higher than check mean yield
2: Mean yield higher than check mean yield by 1 LSD
(4): (-8): Stability variance in significant at 1% probability level; and (0): Stability variance is non-significant
(5): Sum of columns (3) and (4)
(+): Superior genotypes compared to the check cultivar (no. 1)
جدول ۵- خصوصیات زراعی لاین‌های برتر این تحقیق

<table>
<thead>
<tr>
<th>زنوشته</th>
<th>جنگل</th>
<th>روش تا سنبله (DHE)</th>
<th>روش تا سنبله (DMA)</th>
<th>ارتفاع بونه (cm)</th>
<th>وزن هزارانگیاه (کگ)</th>
<th>رنگ (ک)</th>
<th>رنگ (GH)</th>
<th>خواص گینه</th>
<th>سال (Origin)</th>
<th>میدان</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-80-4</td>
<td>Shi#4414/Crow'۸۱۱/</td>
<td>۱۴۰</td>
<td>۱۸۴</td>
<td>۹۴</td>
<td>فقید</td>
<td>۴۰</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>Resistant</td>
</tr>
<tr>
<td>C-80-6</td>
<td>Bow's۸۱۱/Ki'es۸۱۱/Vee's۸۱۱/</td>
<td>۱۳۷</td>
<td>۱۸۰</td>
<td>۹۴</td>
<td>۴۱</td>
<td>A</td>
<td>W</td>
<td>Resistant</td>
<td>Karaj</td>
<td></td>
</tr>
<tr>
<td>C-80-11</td>
<td>Gds/۸۱۱/Anza/۸۱۱/Pt/Nar/۸۱۱/Hys/۸۱۱/</td>
<td>۱۳۸</td>
<td>۱۸۲</td>
<td>۸۹</td>
<td>۴۱</td>
<td>A</td>
<td>W</td>
<td>Resistant</td>
<td>Ardebil</td>
<td></td>
</tr>
<tr>
<td>C-80-14</td>
<td>Omid/Shi#4414/Crow'۸۱۱/</td>
<td>۱۳۸</td>
<td>۱۸۴</td>
<td>۹۸</td>
<td>۴۲</td>
<td>A</td>
<td>F</td>
<td>Resistant</td>
<td>Mashhad</td>
<td></td>
</tr>
<tr>
<td>C-80-19</td>
<td>DH4-168-1577F۳/Vee's۸۱۱/Nac/۸۱۱-۸۱۱-۸۱۱-</td>
<td>۱۳۵</td>
<td>۱۸۱</td>
<td>۹۳</td>
<td>۴۵</td>
<td>A</td>
<td>F</td>
<td>Resistant</td>
<td>Karaj</td>
<td></td>
</tr>
<tr>
<td>C-80-20</td>
<td>DH4 Vee's۸۱۱/Nac/۸۱۱-۸۱۱-۸۱۱-</td>
<td>۱۳۹</td>
<td>۱۸۵</td>
<td>۷۴</td>
<td>۴۱</td>
<td>A</td>
<td>F</td>
<td>Resistant</td>
<td>Karaj</td>
<td></td>
</tr>
</tbody>
</table>

References

منابع مورد استفاده

آقایی، م. م.، مقعد، م. ویزدان، س.، نجفی، ع. و.، قناده، ا. بررسی پایداری عملکرد دانه و شاخص برداشت در زنوشته‌های کندم نان (Triticum aestivum L.) زمستانه و پاییزه، نهال و بذر. (۹۷سبت: ۳۵۱-۳۵۷)

ضیفی‌زاده، م. و. م.، مقعد، م.، بزرگ، ا. و.، س.، و. و. و. بررسی پایداری مختلف پایداری و تعیین ارقام پایدار گندم‌های بارند آزمایشگاهی در دو ساقه کندم. کناره، غربی، ع. و. و. (۸۰۴: ۳۴۵-۳۵۲)

زوارة، ا. ع. و. و. و. کانی، م. و. و. و. و. بررسی و میزان عملکرد لاین‌های امیدبخش کندم نان با شاهد منطقه در شرایط

استان اذربایجان شرقی.

Stability of grain yield in promising winter and facultative wheat
(Triticum aestivum L.) lines

Kebriyai, A., 1 A. Yazdansepas2, S. Keshavarz3, M. R. Bihamta4 and T. Najafi Mirak5

ABSTRACT

To study genotype × environment interaction and stability of grain yield in bread wheat genotypes, 20 promising winter and facultative bread wheat lines were evaluated for grain yield (YLD) in 10 locations in 2001/02 and 2002/03 cropping seasons. Ten locations included Karaj, Zanjan, Ardebil, Arak, Miandoab, Jolgerokh, Mashhad, Hamedan, Eqlid and Tabriz. Experimental design in each environment was randomized complete block (RCB) with three replications. Stability parameters including environmental variance (S^2_i), environmental coefficient of variation (CV_i), Wricke’s ecovalence (W_{ij}^2), stability variance of Shukla (σ_{ij}^2), regression coefficient (b_i), deviation from regression (S^2d_i), coefficient of determination (R^2), in-locational variance (MSy/l) and simultaneous selection for grain yield and stability (YS) were estimated. Results of stability analysis showed that based on the most methods, lines C-80-14, C-80-19 and C-80-20 were determined more stable than the otherse considering the majority of the statistic parameters. However, based on simultaneous selection for yield and stability method genotypes C-80-4, C-80-6 and C-80-11 were identified as the superiors. Among these genotypes, C-80-4 and C-80-6 were further evaluated in on-farm and verification trials in farmers’ fields in different regions of cold zone which based on the results they produced higher yield than the commercial cultivars of the regions.

Key words: Wheat, Genotype × environment interaction, Stability parameters, Variance