Response of canola grain and oil yields, oil and protein contents to different levels of nitrogen and boron fertilizers in Ahvaz region

Mohammad Reza Mardadi, Saeed Shadmand, Maryam Vatanpour, and Reza Foroughi

Response of canola grain and oil yields, oil and protein contents to different levels of nitrogen and boron fertilizers in Ahvaz region

Chickpea

Mardadi Tala'ot, M. R. S. G. Saber, H. N. A., and R. Foroughi

Response of canola grain and oil yields, oil and protein contents to different levels of nitrogen and boron fertilizers in Ahvaz region

Chickpea

Mardadi Tala'ot, M. R. S. G. Saber, H. N. A., and R. Foroughi
تولید اعمال مطلوب کلزا دارد و حسابیتزیادی به کمک آن در این گیاه وجود دارد. مصرف بزرگ عملکرد دانه و محتوی روغن دانه را زیاد می کند. کمک بزرگ

در زیستگی، ریزش و ایجاد شکاف در ساقه می کرده (زیبایی و همکاران،). از این اثر منفی کمبود

در کلزا کاهش رشد و استقرار اولیه ریشه‌ها است. این کمبود به ویژه در زمین‌های اهکی

(مالکوتی و سهپور،) کاربرد مقداری بیشتر یافت.

ممکن است در نتیجه ایجاد سرمایه‌کرد و

موجب اختلال در جوانه‌زیات و سرزنشان شود (مالکوتی و سهپور،) .

مطمئن در همکاران افزایش عملکرد دانه، ماده خشک کیسه و یک جذب کرده، کمک به کاربرد بزرگ مشاهده کردند. استاگولیس و همکاران در اراضی وسیعی که در

شرايط مرتعی و گلخانه‌ای انجام داده دانه دادند که مصرف بور در مقایسه با شهره در اثر ارقم مورد

بررسی کلزا موجب افزایش روشن سازرقیه، وزن خشک ادامه هواپیما و شاخه‌های گریه، ایجاد همچنین

اختلاف‌های نسبی میان نتایج آزمایش‌ها در مرزه و

گلخانه مشاهده کردند. پورتر (1993) مشاهده کرد که افزایش قابل ملاحظه‌ای در تعداد دانه در

خورچنگ کیاها و کاهش یافته درصد روغن

شنیده شده و مواد دسترس برای استفاده چربی که بر روی به (نفی و

همکاران،) . افزایش بیولوژی روغن سیبید امکان به

حداکثر درصد روغن دانه با تأکید داشته، می تواند مربوط به ایجاد در هم

خورچنگ باشد و نه اندوز دانه. مایزر و همکاران

نزد، پر نش بور در تشکیل بذر

تأکید داشته. تأکید بررسی ها در رابطه با اثر بور

درصد روغن دانه کلزا با همدیگر تفاوت دارند. (مالی و گروه،) .

درصد روغن دانه کلزا با همدیگر تفاوت دارند. (مالی و گروه،) .

از عوامل مهم دستیابی به عملکرد در زراعت

کلزا، استفاده کارآمدی از کودها است. نیاز کلزا به

زون حدود دو در بر کندم و لی کارایی بسیار ان از

خاک کمتر از کندم است. کارایی استفاده از نیتروژن

واسیب به شرایط منطقه، وضعیت خاک و نیاز متقابل

عناصر غذایی می‌تواند کلزا نیاز فراوانی به بور

برای عملکرد بیشتر دارد (امحمدی و جاودفر،) .

نفی و همکاران،) .

بررسی گزارش می‌دهد که نیتروژن عملکرد دانه

کلزا را راه افزایش نسبتاً خورچنگ و وزن هزار دانه

افزایش می‌دهد (یافته و همکاران،) . در بین

اجزای عملکرد، با افزایش کاربرد نیتروژن، تعداد دانه

در خورچنگ (می‌شود. افزایش بیزیزی به دلیل

(زیبایی و همکاران،) .

کنفی و همکاران،) .

افزایش تولید مواد تهیه‌کننده در کل دهی و

باروری کلزا و در تقلیل افزایش تعداد خورچنگ و وزن

هزار دانه می‌شود که این عوامل منجر به افزایش

عملکرد دانه می‌گردد (Anderson & Wilent، 1993) .

نوورالحاظن و همکاران (2002) مشاهده کردند که با افزایش نیتروژن عملکرد دانه

افزایش اولی محتوی روغن دانه (مالی و گروه،) .

افزایش نیتروژن، پیش زمینه‌های بیترتیبی نیتروژن‌دار

(می‌شود. افزایش تهیه‌کننده در کل دهی و

کاهش یافته درصد روغن

شنیده شده و مواد دسترس برای استفاده چربی که بر روی به (نفی و

همکاران،) .

فراوانی به بور

دنده می‌گردد (مالی و گروه،) .

فراوانی به بور

(مالی و گروه،) .

فلک و همکاران،) .

فراوانی به بور

(مالی و گروه،) .

فلک و همکاران،) .

فراوانی به بور

(مالی و گروه،) .

فلک و همکاران،) .

فراوانی به بور

(مالی و گروه،) .

فلک و همکاران،) .
"وکس جمله‌های اصلی کاملاً تصادفی نکند..."
اثر بیوفیزیکی درکردن و روغن کلر معنی‌دار بود (جدول ۱). به‌عنوان یک کیلوگرم به‌طور گزارش‌دهنده در هکار با مساحت حسند (NMR) کیلوگرم‌های و دارا بود. کاربرد و یک کیلوگرم به‌طور کلی درکردن نیاز عملکرد از آماری مشابه عملکرد به‌دست آمده کاربرد بی‌انجامی دادن است. (جدول ۱) روند افزایشی عملکرد دانه در دایره‌ای دیده می‌شد. مقایسه اورتوکوان خشک نشان داد که اختلاف معنی‌داری در عملکرد کلی در اثر مصرف نکردند. برای مثال با مصرف بی‌بخاری در دادن (جدول ۱). افزایش تعداد و ماندگاری کل‌ها و جوانی دانه کرده، افزایش خورگانی به‌پرده و نیز باید تشکیل شده در اثر کاربرد بی‌بخاری در دانه. (Porter، ۱۹۹۳، نیتال et al، ۱۹۸۷). داشته باشند. نشان داد که کاربرد بی‌بخاری عملکرد کلیک افزایشی مورد نظر می‌باشد. اثر متقابل نیتروژن و بی‌بخارکند و روغن در عملکرد دانه و روغن از آزمایش بی‌بخارکند دانه و روغن با مصرف کیلوگرم نیتروژن در هکار و (جدول ۱) کیلوگرم بی‌بخاری در هکار به مسافت آماده‌ی بی‌بخاری در دادن اثر مقاوم‌گزینی زمان‌های کیلوگرم نیتروژن در هکار و کیلوگرم نیتروژن در هکار و بی‌بخاری در کیلوگر
Fig. 1. Response of canola grain yield to application of boron

Table 1. Analysis of variance for grain yield, oil yield, grain oil and protein contents.

<table>
<thead>
<tr>
<th>S. O. V.</th>
<th>Mean squares</th>
<th>df.</th>
<th>Grain yield</th>
<th>Oil yield</th>
<th>Grain oil content</th>
<th>Protein content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td></td>
<td>3</td>
<td>0.48**</td>
<td>963.166</td>
<td>0.000563**</td>
<td>0.00024**</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td></td>
<td>3</td>
<td>2.25**</td>
<td>265.986</td>
<td>0.0041**</td>
<td>0.0158**</td>
</tr>
<tr>
<td>Boron (B)</td>
<td></td>
<td>2</td>
<td>0.27**</td>
<td>53.833</td>
<td>0.000076**</td>
<td>0.00081**</td>
</tr>
<tr>
<td>N x B</td>
<td></td>
<td>6</td>
<td>0.460**</td>
<td>1017.06</td>
<td>0.000016**</td>
<td>0.00024**</td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td>1</td>
<td>0.2085**</td>
<td>4274.72</td>
<td>0.08314**</td>
<td>0.001534**</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>33</td>
<td>0.03</td>
<td>5841.51</td>
<td>0.0000112</td>
<td>0.0004</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td></td>
<td>6.67</td>
<td>6.67</td>
<td>0.45</td>
<td>3.76</td>
</tr>
</tbody>
</table>

* and **: Significant at 5 and 1% levels of probability, respectively

References and footnotes:

2. Table 1: Analysis of variance for grain yield, oil yield, grain oil and protein contents.
Table 2. Mean comparison of grain yield, oil yield, and grain oil and protein content as affected by different levels of nitrogen and boron

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nitrogen (Kg/ha)</th>
<th>Oil yield (Kg/ha)</th>
<th>Grain oil content (%)</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1003.97 c</td>
<td>46.74 a</td>
<td>24.56 c</td>
</tr>
<tr>
<td>150</td>
<td>2148 c</td>
<td>1175.85 b</td>
<td>45.13 b</td>
<td>26.63 b</td>
</tr>
<tr>
<td>200</td>
<td>2608 b</td>
<td>1256.11 a</td>
<td>43.44 c</td>
<td>30.02 a</td>
</tr>
<tr>
<td>250</td>
<td>2891 a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boron (Kg/ha)</th>
<th>Oil yield (Kg/ha)</th>
<th>Grain oil content (%)</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>2435 b</td>
<td>1093.95 b</td>
<td>45.04 a</td>
</tr>
<tr>
<td>2.5</td>
<td>2448 b</td>
<td>1101.78 b</td>
<td>45.22 a</td>
</tr>
<tr>
<td>5.0</td>
<td>2550 b</td>
<td>1147.06 b</td>
<td>45.08 a</td>
</tr>
<tr>
<td>10.0</td>
<td>2760 a</td>
<td>1239.77 a</td>
<td>45.09 a</td>
</tr>
</tbody>
</table>

Means, in each column and for each treatment, followed by similar letters are not significantly different at the 5% of probability level using Duncan's Multiple Range Test.

Table 3. Mean comparison of grain and oil yields of canola as affected by different treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (Kg/ha)</th>
<th>Oil yield (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1N1</td>
<td>2100 g</td>
<td>978.84 fg</td>
</tr>
<tr>
<td>B1N2</td>
<td>2560 de</td>
<td>1150.99 bcd</td>
</tr>
<tr>
<td>B1N3</td>
<td>2640 de</td>
<td>1143.02 cde</td>
</tr>
<tr>
<td>B1N4</td>
<td>1932 g</td>
<td>902.21 g</td>
</tr>
<tr>
<td>B2N1</td>
<td>2460 e</td>
<td>1119.08 ed</td>
</tr>
<tr>
<td>B2N2</td>
<td>2940 ab</td>
<td>1284.06 a</td>
</tr>
<tr>
<td>B2N3</td>
<td>2180 fg</td>
<td>1026.33 ef</td>
</tr>
<tr>
<td>B2N4</td>
<td>2600 de</td>
<td>1163.20 bcd</td>
</tr>
<tr>
<td>B3N1</td>
<td>2880 abc</td>
<td>1251.64 abc</td>
</tr>
<tr>
<td>B3N2</td>
<td>2380 ef</td>
<td>1108.49 ed</td>
</tr>
<tr>
<td>B3N3</td>
<td>2800 bcd</td>
<td>1265.13 ab</td>
</tr>
<tr>
<td>B4N1</td>
<td>3100 a</td>
<td>1345.71 a</td>
</tr>
</tbody>
</table>

Means, in each column and for each treatment, followed by similar letters are not significantly different at the 5% of probability level using Duncan's Multiple Range Test.
Table 4. Correlation coefficients between grain yield, oil yield, oil and protein contents of canola

<table>
<thead>
<tr>
<th>Traits</th>
<th>Grain yield</th>
<th>Oil yield</th>
<th>Oil protein</th>
<th>Grain protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain yield</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil yield</td>
<td>0.988**</td>
<td>1</td>
<td>0.602**</td>
<td>-0.794**</td>
</tr>
<tr>
<td>Oil protein</td>
<td>0.518**</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Grain protein</td>
<td>-0.655**</td>
<td>-0.518**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain oil contents</td>
<td>-0.759**</td>
<td>-0.794**</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**: Significant at the 1 % levels of probability.
ns: Non-significant
Fig. 2. Grain yield and protein relationship of canola in different levels of nitrogen

Fig. 3. Relationship between grain yield and protein of canola in different levels of boron
Fig. 4. Relationship between grain yield and grain oil content in canola in different levels of nitrogen.

Fig. 5. Relationship between grain yield and grain oil content in canola in different levels of boron.
روشی تحت تأثیر سطوح مختلف عناصر غذایی مورد بررسی بوده و در پژوهش‌های مربوط به گیاهان زراعی پرورش داده شده که دسترسی به آب و مایع فعال به رعایت باید انجام شود.

References

Response of canola grain and oil yields, oil and protein contents to different levels of nitrogen and boron fertilizers in Ahwaz region

Moradi Telavat¹, M. R., S. A. Siadat², H. Nadian³ and G. Fathi⁴

ABSTRACT

In order to investigate the effect of different levels of nitrogen and boron fertilizers on canola grain protein, oil and yield, in Ahwaz region, an experiment was conducted in 2005-2006 cropping season in Ramin Agriculture and Natural Resources University. The experimental design was a randomized complete blocks with three N rates (150, 200 and 250 kg/ha) and four B rates (0, 2.5, 5 and 10 kg/ha). All treatments were replicated four times. Result showed that with increasing nitrogen rates, grain and oil yield significantly increased. Application of boron also significantly influenced grain yield. Nitrogen × boron, on grain and oil yield was not significant. However, highest grain and oil yield was obtained from 250 and 10 Kg/ha N and B, treatment. With comparison of treatments it was observed that 200 Kg N/ha with 10 Kg B/ha produced grain and oil yield higher than 250 Kg N/ha without Boron. Grain protein and oil contents with increasing of nitrogen levels were significantly increased and decreased, respectively. But boron application had no effect on grain protein and oil contents. Results also showed that relationship between grain yield and grain oil and protein contents can be showed with a logarithmic equation. These relationships was significantly affected by nitrogen levels. With increasing of nitrogen rates, reduction of grain oil and protein contents, were slower in higher levels of grain yield. Although, effect of boron were small on this traits, but grain oil and protein contents in higher levels of grain yield was less than lower yields.

Key words: Boron, Nitrogen, Canola, Grain oil, Grain protein, Grain yield

Received: August, 2007.
1- Former M.Sc. Student, Agriculture and Natural Resources University of Ramin, Ahvaz, Iran (Corresponding author)
2- Prof. Agriculture and Natural Resources University of Ramin, Ahvaz, Iran.
3- Prof. Agriculture and Natural Resources University of Ramin, Ahvaz, Iran.
4- Assistand Prof. Agriculture and Natural Resources University of Ramin, Ahvaz, Iran.