Study of selection indices for drought tolerance in some of grain maize hybrids

چکیده

عباس جعفری، رجب چوکان، فرзаاد پاک نژاد و عباس پور میدانی

یکی از اصلی‌ترین و انتخاب برای تحمل به خشکسالی در تعدادی از ه嘉宾ی که ذرت دانه‌ای

به منظور شناسایی کیفیت ذرت دانه‌ای متحمل به دو زوئه در سال زراعت 1399 در نزدیکی شهرک

کوه‌های در استان قم در منطقه‌ای به نام خانک و مدال، اجرا گردید. در این ارزیابی معمول خانکی و برای افزایش جدایی

و با استفاده از طرح پوک کامل تصادفی در چهار تکرار در شرایط آبیاری 30 و دردسته شرایط وارد شدند. مصرف

دانته و اجرا عملکرد در شرایط آبیاری معمول و نش خشکی وجود دارد. داده‌ها را نشان داده‌اند عملکرد دانه‌ها در

Sarah نام نشاندان و نشان دهنده ارزیابی می‌باشند. حداقل خشکسالی (STI) با داشتن BC678 و BC652 و BC678

برای تولید همگنی انتخاب برای تحمل به خشکسالی معمولی داشته‌اند. در تولید همگنی وي از GMP و STI توسط Harm و GMP

عنوان همراه با داشتن کاربرد در کمک به نزدیکی ذرت مصرف گردیده است. با عملکرد دانه در شرایط نرمال و نش خشکی داشته‌اند.

واژه‌های کلیدی: دانه‌ای، هیربید، نش خشکی، شرایط نرمال و تحمل عملکرد دانه

تاریخ دریافت: ۱۳۹۹/۰۴/۰۱

دریافت نهایی: ۱۳۹۹/۰۶/۰۳

مشابه کارشناسی/بسته اصلاح بانک دانشگاه آزاد اسلامی/انجام گزارش

- ارزیابی میزان کمک به تحقیقات کشاورزی و منابع طبیعی استان فارس
بررسی تحمیل به خشکسالی و گرمی محتمل بر اساس شرایط موجود در منطقه انجام شد. مقدار بارش، شدت و پراکنش بارندگی کاوش نوسانات دما از خصوصیات دانه خشکسالی با توجه به کمیت منابع ابی در کشور و نیاز به صرفه جویی در مصرف اب دستیابی از این ارقامی که در متن باید باشد یا اثر کمک اجرایی در شرایط سیمه و کاهش عملکرد شوند ضروری می‌باشد. با توجه به نقش ذرت در تولیدانه و محلی و نامی، غذا دام و دیگر مصرف‌ان زیاد در جمله مصرف صنعت بسیار است. که ذرت در ایران نیز جزو محصولات دارای اهمیت تلقی شود.

در ایران در راستای خود کفان از اهداف مهم آبیاری بندند منتظم با اجرای برنامه‌های افزایش تولید ذرت دامه در سال‌های اخیر، این محلصول روند بسیار سرعتی را از نظر سطح زیر کشت، تولید و عملکرد طی نموده است.

لارسون و همایش زاده (1981) به منظور بررسی عمل مهم‌دیده ذرت و لاین‌های والد آنها به خشکسالی با استفاده از شاخه‌های محتمل تحلیل به تن پا می‌آمیخت و در مطالعه کشاورزی در حال تولید گریز از برنامه‌های مطلوب در شرایط تشنگ و بدون تشنگ برخوردار هستند. (Larson and Clegg, 1999) و روستاییان و زود رس و ذرت رس ذرت به یک بارندگی با رشد سیمه می‌باشد که آن امر تواند موجب بهبود عملکرد شود. (Roseille and Hamblin, 1981) و همکاران (1981) در بررسی‌های ارزی اثر تشنگ خشکسالی عملکرد و اجزای عملکرد در هشت سنوی ذرت
نتایج تجزیه‌های شیمیایی محدودیت‌های شوری و قلبیت ندارد و میزان کریم آلی آن کم، فسفر و پتاسیم قابل جذب در حد متوسط است. میانگین رطوبت نیم‌سر خاک تا عمق سامانه‌تر در تری‌های غرب و نقطه پژوهانیکی دانش به ترتیب برابر و درصد

\[MP = \frac{Y_p + Y_s}{2} \]

مقادیر بالایی MP نشان‌دهنده غلظت‌های قابل قبول برای یک زنوتیپ نمایانگر مشاهده‌های نشان‌دهنده بالا و عملکرد بالقوه بیش از زنوتیپ می‌باشد.

\[STI = \left(\frac{Y_p}{Y_p} \right) \left(\frac{Y_s}{Y_s} \right) = \frac{(Y_p)(Y_s)}{(Y_p)^2} \]

میانگین هدف محصول دهی STI برای یک زنوتیپ نمایانگر تحمیل به خشکی بالا و عملکرد بالقوه بیش از زنوتیپ می‌باشد.

\[GMP = \sqrt{(Y_s)(Y_p)} \]

این شاخص حساسیت کمتری به مقادیر بیش از Yp و Ys متقوم دارد و به‌طور بودن مقدار عدیدی از

در کلیه فرمول‌های فوق، عملکرد بالقوه هر زنوتیپ در محیط بودن یا

عملکرد بالقوه هر زنوتیپ در محیط بودن

\[TOL = Y_p - Y_s \]

1- Stress Susceptibility Index
2- Stress Intensity
3- Harmonic Mean
4- Tolerance Index
5- Mean Productivity
6- Geometric Mean Productivity
7- Geometric Mean Productivity
درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

درصد نظرات، میانگین عملکرد و برخی از صفات مربوط به اجزای عملکرد در جدول 1 آرائه شده است. برای بهبود تعداد دانه در بالای ساقه (Campose et al., 2004) کامیون و همکاران در تحقیقی که برای بهبود تعداد دانه در بالای ساقه به این تیپهای از نظر تحقیقی مورد بررسی قرار گرفته است.

1- Anthesis- Silking Interval
Table 1. Changes in mean of grain yield and its components under normal and drought stress conditions

<table>
<thead>
<tr>
<th>Trait</th>
<th>Variation (%)</th>
<th>Stress Normal</th>
<th>Release</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows/ear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel/ear row</td>
<td>11.93</td>
<td>13.72</td>
<td>15.58</td>
<td></td>
</tr>
<tr>
<td>Ear diameter</td>
<td>10.47</td>
<td>3.76</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>Kernel No/ear</td>
<td>5.50</td>
<td>292.91</td>
<td>591.11</td>
<td></td>
</tr>
<tr>
<td>Kernel depth</td>
<td>15.03</td>
<td>0.70</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Hectolitre</td>
<td>12.05</td>
<td>612.10</td>
<td>696.00</td>
<td></td>
</tr>
<tr>
<td>1000 Kernel Weight</td>
<td>29.30</td>
<td>146.94</td>
<td>207.84</td>
<td></td>
</tr>
<tr>
<td>Kernel diameter</td>
<td>27.23</td>
<td>3.42</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>Kernel width</td>
<td>9.93</td>
<td>7.31</td>
<td>7.86</td>
<td></td>
</tr>
<tr>
<td>(Yield (t/ha)</td>
<td>31.72</td>
<td>4.16</td>
<td>6.093</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Estimation of drought tolerance indices in grain maize hybrids

<table>
<thead>
<tr>
<th>Entry</th>
<th>Hybrids</th>
<th>Yp*</th>
<th>Ys</th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>SSI</th>
<th>Harm</th>
<th>STI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BC582</td>
<td>5.62fhheg</td>
<td>4.31gf</td>
<td>1.31</td>
<td>4.96</td>
<td>4.92</td>
<td>0.73</td>
<td>4.87</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>BC678</td>
<td>4.92j</td>
<td>2.83i</td>
<td>2.09</td>
<td>3.87</td>
<td>3.73</td>
<td>1.34</td>
<td>3.59</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>BC504</td>
<td>8.35a</td>
<td>5.07b</td>
<td>3.28</td>
<td>6.71</td>
<td>6.50</td>
<td>1.24</td>
<td>6.30</td>
<td>1.14</td>
</tr>
<tr>
<td>4</td>
<td>NS540</td>
<td>5.28hi</td>
<td>2.05m</td>
<td>3.23</td>
<td>3.66</td>
<td>3.28</td>
<td>1.93</td>
<td>2.95</td>
<td>0.29</td>
</tr>
<tr>
<td>5</td>
<td>BC666</td>
<td>5.79fe</td>
<td>4.35gf</td>
<td>1.41</td>
<td>5.08</td>
<td>5.03</td>
<td>0.76</td>
<td>4.98</td>
<td>0.68</td>
</tr>
<tr>
<td>6</td>
<td>BC652</td>
<td>7.28cb</td>
<td>5.60a</td>
<td>1.68</td>
<td>6.44</td>
<td>6.38</td>
<td>0.72</td>
<td>6.33</td>
<td>1.10</td>
</tr>
<tr>
<td>7</td>
<td>BC572</td>
<td>5.39fhg</td>
<td>3.37k</td>
<td>2.02</td>
<td>4.38</td>
<td>4.26</td>
<td>1.18</td>
<td>4.14</td>
<td>0.49</td>
</tr>
<tr>
<td>8</td>
<td>MV502</td>
<td>5.79fe</td>
<td>4.03ih</td>
<td>1.76</td>
<td>4.91</td>
<td>4.83</td>
<td>0.96</td>
<td>4.75</td>
<td>0.63</td>
</tr>
<tr>
<td>9</td>
<td>KSC500</td>
<td>5.58fhg</td>
<td>3.29k</td>
<td>2.43</td>
<td>4.43</td>
<td>4.28</td>
<td>1.29</td>
<td>4.13</td>
<td>0.49</td>
</tr>
<tr>
<td>10</td>
<td>OSSK499</td>
<td>5.53fhg</td>
<td>4.50ef</td>
<td>1.03</td>
<td>5.01</td>
<td>4.98</td>
<td>0.58</td>
<td>4.96</td>
<td>0.67</td>
</tr>
<tr>
<td>11</td>
<td>BC462</td>
<td>5.05ij</td>
<td>4.24gf</td>
<td>0.83</td>
<td>4.63</td>
<td>4.61</td>
<td>0.51</td>
<td>4.59</td>
<td>0.57</td>
</tr>
<tr>
<td>12</td>
<td>DSSK444</td>
<td>5.70fe</td>
<td>4.35gf</td>
<td>1.35</td>
<td>5.02</td>
<td>4.98</td>
<td>0.75</td>
<td>4.93</td>
<td>0.67</td>
</tr>
<tr>
<td>13</td>
<td>BC404</td>
<td>6.97e</td>
<td>4.61ed</td>
<td>2.36</td>
<td>5.79</td>
<td>5.66</td>
<td>1.06</td>
<td>5.54</td>
<td>0.86</td>
</tr>
<tr>
<td>14</td>
<td>BC418</td>
<td>5.96c</td>
<td>4.74ed</td>
<td>1.22</td>
<td>5.35</td>
<td>5.31</td>
<td>0.64</td>
<td>5.28</td>
<td>0.76</td>
</tr>
<tr>
<td>15</td>
<td>KSC320</td>
<td>7.39b</td>
<td>4.06ih</td>
<td>3.33</td>
<td>5.72</td>
<td>5.47</td>
<td>1.42</td>
<td>5.24</td>
<td>0.81</td>
</tr>
<tr>
<td>16</td>
<td>KSC302</td>
<td>6.96g</td>
<td>4.88cb</td>
<td>2.08</td>
<td>5.92</td>
<td>5.82</td>
<td>0.94</td>
<td>5.73</td>
<td>0.91</td>
</tr>
<tr>
<td>17</td>
<td>KSC250</td>
<td>5.67fg</td>
<td>4.31gf</td>
<td>1.36</td>
<td>4.99</td>
<td>4.94</td>
<td>0.75</td>
<td>4.89</td>
<td>0.66</td>
</tr>
<tr>
<td>18</td>
<td>KSC260</td>
<td>6.28d</td>
<td>5.00b</td>
<td>1.28</td>
<td>5.64</td>
<td>5.60</td>
<td>0.64</td>
<td>5.56</td>
<td>0.84</td>
</tr>
<tr>
<td>19</td>
<td>KSC647</td>
<td>6.59d</td>
<td>3.88ij</td>
<td>2.71</td>
<td>5.23</td>
<td>5.05</td>
<td>1.29</td>
<td>4.88</td>
<td>0.69</td>
</tr>
<tr>
<td>20</td>
<td>KSC704</td>
<td>5.54fhg</td>
<td>3.69j</td>
<td>1.85</td>
<td>4.61</td>
<td>4.52</td>
<td>1.05</td>
<td>4.42</td>
<td>0.55</td>
</tr>
</tbody>
</table>
تغییر حاصل از شرایط تنش را بایان می‌کند. این گونه دیگر در مورد این شاخص آنست که پایین بوده‌است TOL به معنی اینکه عملکردهای تنش بیشتر در شرایط بی‌شکن تنش بلکه ممکن است عملکرد یک تولید در شرایط بودن تنها به‌عنوان یک بافت کمتری همراه باشد که این باعث کرکمه مانند TOL فرمول و هم‌داری‌ها (مقدم و هم‌داری‌های زمانی) در این مورد BC504 KSC320 به عنوان NS540 و به عنوان NS540 از طریق انتخاب شدند. (جدول ۱).

جدول ۱: حساب س اختیاری به تنش (SSI) اینه مقدار عددهای پایین در این شاخص نشان دهنده تغییر حاصل از شرایط تنش و نشان دهنده در بررسی عملکردهای پایین به‌های‌های تنش خشکی در ذرت تقریبی می‌شود. این مقدار عددهای این شاخص حسابی (جدول ۱) که مقدار در شرایت تنش و SSI (می‌باشد) آن است که در حالت دهه‌های زیاده‌های این عملکرد در تاریکه‌های پایین به‌های‌های نشان دهنده زیاده‌هایی دارد. (Fernandez, 1992) مقدام و هم‌داری‌ها (مقدام و هم‌داری‌های Zadeh) مطالعه‌های دارد. در بررسی‌های مشاهده که روی آن توانایی انجام نمی‌شود.

فرنandez (1992) در بررسی عملکردهایی گروه‌های ها در دور محیط و بیده‌نش نشان داد که تأثیر کاهش نیست به دو محیط دیگر با چهار گروه تغییر نموده است:

الف: گروه‌هایی که عملکرد مشابهی را در شرایط تنش و بدون تنش دارا هستند (کروه A).
ب: گروه‌هایی که فقط عملکرد خوبی در محیط بدون تنش دارا هستند (کروه B)

در بررسی عملکردها در محیط تنش و نرم‌رسی تریکه‌های در حالت تنش و نشان دهنده این بافت در فرمول و هم‌داری‌ها (مقدم و هم‌داری‌های زمانی) و به عنوان SSI به عنوان NS540 و

BC504 KSC320 علاوه بر میزان عملکرد هیریده‌ها در شرایط تنش به تهیه‌ای است این نسخت به فرمول (جدول ۱) هر چه این جزء بر گسترش راه‌های کمک‌کننده می‌شود (مقدام و هم‌داری‌های زمانی) علاوه بر میزان عملکرد هیریده‌ها در شرایط تنش و نشان دهنده این بافت در فرمول و هم‌داری‌ها (مقدام و هم‌داری‌های زمانی) به عنوان SSI به عنوان NS540 و

BC504 KSC320 علاوه بر میزان عملکرد هیریده‌ها در شرایط تنش به تهیه‌ای است این نسخت به فرمول (جدول ۱) هر چه این جزء بر گسترش راه‌های کمک‌کننده می‌شود (مقدام و هم‌داری‌های زمانی) به عنوان SSI به عنوان NS540 و

BC504 KSC320 علاوه بر میزان عملکرد هیریده‌ها در شرایط تنش به تهیه‌ای است این نسخت به فرمول (جدول ۱) هر چه این جزء بر گسترش راه‌های کمک‌کننده می‌شود (مقدام و هم‌داری‌های زمانی) به عنوان SSI به عنوان NS540 و

BC504 KSC320 علاوه بر میزان عملکرد هیریده‌ها در شرایط تنش به تهیه‌ای است این نسخت به فرمول (جدول ۱) هر چه این جزء بر گسترش راه‌های کمک‌کننده می‌شود (مقدام و H
"مثاله شاخص های انتخاب برای تحميل "

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.

با توجه به اینکه میزان بالای عدیدی این شاخص ناشان دهنده تحميل به تنش است، هیبریدهای KSC302 و BC652 به عوان HBP4004 مالاتور که در دیده می شود، این ها در کروه A قرار دارند. نتایج توجه کرده که در سایر کروه های دیگر می توان این ها را در کروه A مورد بررسی قرار داد. با وجود در کروه A، در مورد HBP4004، دارند. فعالیت این ها در نواحی دیگر کروه ها مشاهده شده است.
شکل ۱: گراف۳- بعدی برای تحمل بیماری بی‌فکری سانتور در هر نوع نژاد‌های گندم مبنای TOL

شکل ۲: گراف۳- بعدی برای تحمل بیماری بی‌فکری سانتور در هر نوع نژاد‌های گندم مبنای MP

شکل ۳: گراف۳- بعدی برای تحمل بیماری بی‌فکری سانتور در هر نوع نژاد‌های گندم مبنای GMP
Fig. 4. 3-D graph for drought tolerance in maize hybrids based on SSI index

Fig. 5. 3-D graph for drought tolerance in maize hybrids based on Harm index

Fig. 6. 3-D graph for drought tolerance in maize hybrids based on STI
شکل ۷- دندوگرام حاصل از تجزیه‌گر خوشه‌ای ذرت براساس شاخص‌های تحمل و حساسیت به تنش و عملکرد دانه

Fig. 7. Dendrogram of cluster analysis of maize hybrids based on tolerance and susceptibility indices and grain yield
Table 3. Correlation between different drought tolerance indices and grain yield under normal and drought stress conditions

<table>
<thead>
<tr>
<th></th>
<th>YP</th>
<th>YS</th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>SSI</th>
<th>HARM</th>
<th>STI</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS</td>
<td>0.61**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOL</td>
<td>0.51*</td>
<td>-0.35</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.90**</td>
<td>0.89**</td>
<td>0.10**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>0.85**</td>
<td>0.93**</td>
<td>0.0016</td>
<td>0.99**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSI</td>
<td>-0.09**</td>
<td>-0.71**</td>
<td>0.89**</td>
<td>-0.32</td>
<td>-0.42**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARM</td>
<td>0.80**</td>
<td>0.96**</td>
<td>-0.091</td>
<td>0.97**</td>
<td>0.99**</td>
<td>-0.50*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td>0.88**</td>
<td>0.90**</td>
<td>0.063</td>
<td>0.99**</td>
<td>0.99**</td>
<td>-0.36**</td>
<td>0.98**</td>
<td>1</td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% levels of probability, respectively.

ns: Non-Significant

References

Study of selection indices for drought tolerance in some of grain maize hybrids

Jafari, A1., R. Choukan2, F. Paknejad3 and A. Pourmaidani4

ABSTRACT

To study the drought tolerance in some of grain maize hybrids, this study was carried out in Qom province in 2006 cropping season. Twenty maize hybrids were evaluated in randomized complete block design with four replications, in two separate experiments, under normal irrigation (30% depletion of available water) and drought stress (60% depletion of available water). Results of analysis of variance for grain yield and its components showed variation among hybrids under normal and drought stress conditions. The highest yield under normal and stress conditions belonged to hybrids BC504 and BC652, respectively. While, hybrids BC678 and NS504 showed the lowest yield under normal and stress conditions, respectively. To evaluating the response of hybrids to drought stress, different indices, including, Stress Susceptility Indices (SSI), Harmonic mean (Harm), Tolerance Index (TOL), Mean Productivity (MP), Stress Tolerance Index (STI) and Geometric Mean Productivity (GMP) were used. Different indices revealed hybrids BC504, BC652, BC404, KSC302, KSC320 and KSC647 as tolerance under stress condition. STI, MP, GMP and Harm indices, were identified as suitable indices to be used in applied maize breeding programs. These indices showed the highest correlation between grain yield under normal and drought stress conditions.

Key words: Maize, Hybrid, Drought stress, Normal condition, Tolerance indices, Grain yield

Received: September, 2007.
1- Former M.Sc. Student, Islamic Azad University, Karaj Unit, Karaj, Iran.
2- Faculty member, Seed and Plant Improvement Institute, Karaj, Iran (Corresponding author).
3- Faculty member, Islamic Azad University, Karaj Unit, Karaj, Iran.
4- Faculty member, Agriculture and Natural Research Center of Qom Province, Qom, Iran.