Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous and petalled flowers rapeseed (Brassica napus L.) cultivars

٢٨٣

Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous and petalled flowers rapeseed (Brassica napus L.) cultivars

٢٨٣

٢٨٣

٢٨٣
کلراکی از مهم‌ترین دانه‌های روح‌الله است که روغن آن بسته به ترکیب اسیدهای چربی، باریک، مصرف‌امنی و مواد آنتی‌کارکائیی را در مقدار قارا می‌دهد. ماده‌های مورفولوژیک و ایستاکلول‌ها کوئن‌ها و هم‌کاران، بر اساس اندازه‌گیری کیفیت و با نظر به عملکرد دانه و روغن تأثیر بسزایی دارد (زورده و امام، ۱۹۸۳). سخت بدن کلراکی است در کلاه‌های‌کار که به دو روش قرار داده می‌شود. هدف با تغییر تراکم بوده و توزیع مناسب بودن سطح رشد (Rao et al., ۱۹۹۱) برای رشد و نمو، توزیع گل‌های زرد رنگ در راه‌حل و انتخاب تراکم بوده و آن می‌باشد که باعث کاهش فرآیند خورشیدی و تعادل در کارکرد آن شده و در می‌آید سبب کاهش دوا و سطح سبز گردن‌ها و کاهش تغییر آب شکل خشک در طول دوره گذشته شده‌بوده ولی در زون‌هایی که بدون کلراکی به دلیل عدم وجود کلراکی ها، نفوذ نور به داخل سیاره و نزدیک بودن و فرآیند دچار عدم وجود کلراکی ها، قابلیت کشتن در تراکم‌ها بالاتر و امکان افزایش عملکرد در سطح و وجود تراکم (Rao et al., ۱۹۹۱).

1- Canopy Architecture
2- Apetalous flowers
3- Leaf Area Index
4- Crop Growth Rate
5- Net Assimilation Rate
"اجرآیاش کاشت و نواحی‌های برون..."
PARAMETER

TDW = W = e ^ {a+bt+ct}

1. Total Dry Weight
کاربرد مصرف تابش (RUE) برای محاسبه کارآیی مصرف تابش (LAI) از شدن کامل سایه‌اندازی (برای PAR شمای پرورش در محل و یک پیک بار در سالات وسط روز میزان ضریب نوری (PAR) نشان می‌دهد که به‌طور مداوم در حالت نروژ، تابش و روزانه fille سطوح برداشت رشد در محل و در نتیجه پرورش نیاز کرده‌اند. در (PAR) و همکاران (2017)، برای ناحیه‌ای از Light Interception (LI) رابطه (Wells, 1991) استفاده شد:

\[
L1\% = \left(1 - \frac{L1}{I0}\right) \times 100
\]

که در آن R1 و L1 به صورت درصد درصد رشد و لایه سطح این داده می‌شود. برای مثال در محدوده PAR بین نمایسان جهت تعیین و محاسبه LAI از Light Interception (LI) استفاده شد (Wells, 1991).
Table 1. Analysis of variance for growth indices in apetalous and petalless flowers rapeseed cultivars at flowering stage, in different planting patterns and plant densities.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>LAI</th>
<th>TDM</th>
<th>CGR</th>
<th>NAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication (R)</td>
<td>0.0001 in</td>
<td>57.33 in</td>
<td>0.0000028 in</td>
<td>0.000044 in</td>
</tr>
<tr>
<td>Planting pattern (PP)</td>
<td>0.1196**</td>
<td>254184.02**</td>
<td>0.000053</td>
<td>0.0413**</td>
</tr>
<tr>
<td>Error (a)</td>
<td>0.0003</td>
<td>11.44</td>
<td>0.000053</td>
<td>0.00011</td>
</tr>
<tr>
<td>Cultivar (C)</td>
<td>0.0936**</td>
<td>232484.69**</td>
<td>0.021</td>
<td>0.0152**</td>
</tr>
<tr>
<td>Plant density (D)</td>
<td>1.9090**</td>
<td>756382.33**</td>
<td>0.4599</td>
<td>0.158**</td>
</tr>
<tr>
<td>PP × C</td>
<td>0.2072**</td>
<td>13884.69**</td>
<td>0.0182</td>
<td>0.000044 in</td>
</tr>
<tr>
<td>PP × D</td>
<td>0.0212**</td>
<td>35521.11**</td>
<td>0.0069</td>
<td>0.00753**</td>
</tr>
<tr>
<td>C × D</td>
<td>0.0065**</td>
<td>2714.11**</td>
<td>0.0097</td>
<td>0.00654**</td>
</tr>
<tr>
<td>C × PP × D</td>
<td>0.0002</td>
<td>15.59</td>
<td>0.00018</td>
<td>0.000074</td>
</tr>
</tbody>
</table>

** Significant at the 1% probability level.
ns: Non-Significant.
Table 2- Mean comparison of plant traits in petalled and apetalous flowers rapeseed at flowering stage in square (S.P.P.) and rectangular (R.P.P.) planting patterns.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>LAI (m²)</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td>3.15 b</td>
<td>1345 b</td>
<td>2.52 b</td>
<td>0.17 b</td>
</tr>
<tr>
<td>Apetalous</td>
<td>3.30 a</td>
<td>1545 a</td>
<td>2.62 a</td>
<td>0.21 a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Act of planting pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10 d</td>
</tr>
<tr>
<td>3.10 c</td>
</tr>
</tbody>
</table>

Main effect of planting pattern

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>LAI (m²)</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P. P.</td>
<td>3.23 a</td>
<td>1444 a</td>
<td>2.57 a</td>
<td>0.18 a</td>
</tr>
<tr>
<td>R. P. P.</td>
<td>3.11 b</td>
<td>1267 b</td>
<td>2.43 b</td>
<td>0.11 b</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level- using Tukey’s Test.

Table 3- Means comparison of plant traits of petalled and apetalous flowers rapeseed cultivars at flowering stage in square (S.P.P.) and rectangular (R.P.P.) planting patterns and different plant densities.

<table>
<thead>
<tr>
<th>Density</th>
<th>TDA (m²)</th>
<th>LAI</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P. M.</td>
<td>33</td>
<td>3.04 c</td>
<td>1362 c</td>
<td>2.53 c</td>
<td>0.14 c</td>
</tr>
<tr>
<td>67</td>
<td>3.68 a</td>
<td>1712 a</td>
<td>2.81 a</td>
<td>0.34 a</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>2.98 d</td>
<td>1261 d</td>
<td>2.38 d</td>
<td>0.08 d</td>
<td></td>
</tr>
</tbody>
</table>

R. P. M.	33	3.01 c	1206 e	2.40 d	0.09 d
67	3.56 b	1571 b	2.62 b	0.22 b	
133	2.77 e	1054 f	2.27 e	0.04 e	

Main effect of plant density

<table>
<thead>
<tr>
<th>Density</th>
<th>TDA (m²)</th>
<th>LAI</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P. M.</td>
<td>33</td>
<td>3.03 b</td>
<td>1283 b</td>
<td>2.46 b</td>
<td>0.11 b</td>
</tr>
<tr>
<td>67</td>
<td>3.62 a</td>
<td>1641 a</td>
<td>2.71 a</td>
<td>0.28 a</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>2.86 e</td>
<td>1157 c</td>
<td>2.32 c</td>
<td>0.05 c</td>
<td></td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level- using Tukey’s Test.
Table 4- Mean comparison of plant traits of petalled and apetalous rapeseed cultivars at flowering stage in different plant densities.

<table>
<thead>
<tr>
<th>Density</th>
<th>LAI</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.02 c</td>
<td>1249 d</td>
<td>2.44 d</td>
<td>0.10 d</td>
</tr>
<tr>
<td>67</td>
<td>3.56 b</td>
<td>1515 b</td>
<td>2.67 b</td>
<td>0.26 b</td>
</tr>
<tr>
<td>133</td>
<td>2.78 c</td>
<td>1077 f</td>
<td>3.23 e</td>
<td>0.04 f</td>
</tr>
<tr>
<td>Apetalous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.03 c</td>
<td>1319 c</td>
<td>2.49 c</td>
<td>0.14 c</td>
</tr>
<tr>
<td>67</td>
<td>3.68 a</td>
<td>1767 a</td>
<td>2.76 a</td>
<td>0.30 b</td>
</tr>
<tr>
<td>133</td>
<td>2.95 d</td>
<td>1237 e</td>
<td>3.23 e</td>
<td>0.08 e</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukeys Test.

Table 4- Mean comparison of plant traits of petalled and apetalous rapeseed cultivars at flowering stage in different plant densities.

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukeys Test.
Fig. 1. Dry matter accumulation in petalled rapeseed at square planting pattern and three plant densities.

Fig. 2. Dry matter accumulation in petalled rapeseed at rectangular planting pattern and three plant densities.

Fig. 3. Dry matter accumulation in apetalous rapeseed at square planting pattern and three plant densities.

Fig. 4. Dry matter accumulation in apetalous rapeseed at rectangular planting pattern and three plant densities.
مجله، جلد ۴، شماره ۶۸۳۱، ۱۹۳۷

۷۶

۱۸/۲۰۱، ۴(. ﴿

۱۸/۲۰۱، ۴(. ﴿

کلبرک کردن، سرعت رشد واراکش دامی که داخل پوشش گذاشته است.

از سرعت رشد کمتری برخورد بودند (این شکل‌ها). در حداقل بودن

کلمه این استفاده نموده و روابط کلی در مراجعه شود. با خروج از مرحله روزت و افزایش

سرعت بزرگ و در تنبجه بهره‌ای بهتر از ناشی

از سبک برک و در انتهای دوره NAR افزایش (نگهداری توانهای کاهش چند)

در انتهای دوره می‌توان به کاهش رقابت در اثر

روش برک گذاشته و فوستنش شده، خوراک‌ها که سطح

فوستنش کندن‌های را تشکیل دهنده، نسبت

دای (۱۹۷۵) در مراحل اولیه رشد که

شاخص سطح برک کم است، برک‌ها به طور کامل در

معرض نور قرار داشته و باید این سرعت جذب خالص

انه در حداکثر مقدار بود از این روند نزول

که در چنین اثر مخصوصاً ناشی از افزایش

برک و افزایش تعدیل برک در بونهای کلزا و در

برک گذاشته آنها ساندنی یک روش از کاوشت از که

روندهای کاهشی کنترل برخورد بودن که به نظر می‌رسد

کاشت مربع، تراکم ۰.۵۰ به متر مربع و رقم بودن

کلبرک گذاشته که در دلال دانش سطح برک

شکل و توپه. دمای نشان نسبت به رقم

کلبرک کردن، سرعت رشد واراکش دامی که داخل پوشش گذاشته است.

از سرعت رشد کمتری برخورد بودند (این شکل‌ها). در حداقل بودن

کلمه این استفاده نموده و روابط کلی در مراجعه شود. با خروج از مرحله روزت و افزایش

سرعت بزرگ و در تنبجه بهره‌ای بهتر از ناشی

از سبک برک و در انتهای دوره NAR افزایش (نگهداری توانهای کاهش چند)

در انتهای دوره می‌توان به کاهش رقابت در اثر

روش برک گذاشته و فوستنش شده، خوراک‌ها که سطح

فوستنش کندن‌های را تشکیل دهنده، نسبت

دای (۱۹۷۵) در مراحل اولیه رشد که

شاخص سطح برک کم است، برک‌ها به طور کامل در

معرض نور قرار داشته و باید این سرعت جذب خالص

انه در حداکثر مقدار بود از این روند نزول

که در چنین اثر مخصوصاً ناشی از افزایش

برک و افزایش تعدیل برک در بونهای کلزا و در

برک گذاشته آنها ساندنی یک روش از کاوشت از که

روندهای کاهشی کنترل برخورد بودن که به نظر می‌رسد

کاشت مربع، تراکم ۰.۵۰ به متر مربع و رقم بودن

کلبرک گذاشته که در دلال دانش سطح برک

شکل و توپه. دمای نشان نسبت به رقم

کلبرک کردن، سرعت رشد واراکش دامی که داخل پوشش گذاشته است.

از سرعت رشد کمتری برخورد بودند (این شکل‌ها). در حداقل بودن

کلمه این استفاده نموده و روابط کلی در مراجعه شود. با خروج از مرحله روزت و افزایش

سرعت بزرگ و در تنبجه بهره‌ای بهتر از ناشی

از سبک برک و در انتهای دوره NAR افزایش (نگهداری توانهای کاهش چند)

در انتهای دوره می‌توان به کاهش رقابت در اثر

روش برک گذاشته و فوستنش شده، خوراک‌ها که سطح

فوستنش کندن‌های را تشکیل دهنده، نسبت

دای (۱۹۷۵) در مراحل اولیه رشد که

شاخص سطح برک کم است، برک‌ها به طور کامل در

معرض نور قرار داشته و باید این سرعت جذب خالص

انه در حداکثر مقدار بود از این رROND نژول

که در چنین اثر مخصوصاً ناشی از افزایش

برک و افزایش تعدیل برک در بونهای کلزا و در

برک گذاشته آنها ساندنی یک روش از کاوشت از که

روندهای کاهشی کنترل برخورد بودن که به نظر می‌رسد

کاشت مربع، تراکم ۰.۵۰ به متر مربع و رقم بودن

کلبرک گذاشته که در دلال دانش سطح برک

شکل و توپه. دمای نشان نسبت به رقم

کلبرک کردن، سرعت رشد واراکش دامی که داخل پوشش گذاشته است.

از سرعت رشد کمتری برخورد بودند (این شکل‌ها). در حداقل بودن

کلمه این استفاده نموده و روابط کلی در مراجعه شود. با خروج از مرحله روزت و افزایش

سرعت بزرگ و در تنبجه بهره‌ای بهتر از ناشی

از سبک برک و در انتهای دوره NAR افزایش (نگهداری توانهای کاهش چند)

در انتهای دوره می‌توان به کاهش رقابت در اثر

روش برک گذاشته و فوستنش شده، خوراک‌ها که سطح

فوستنش کندن‌های را تشکیل ده
۷۶/۲
()۸(.
)Mendham, et al ., 1981 (.)
Fig 5. LAI variation in petalled rapeseed at square planting pattern and three plant densities.

Fig 6. LAI variation in apetalous rapeseed at square planting pattern and three plant densities.

Fig 7. LAI variation in petalled rapeseed at rectangular planting pattern and three plant densities.

Fig 8. LAI variation in apetalous rapeseed at rectangular planting pattern and three plant densities.
Fig. 9. CGR variation in petalless rapeseed at square planting pattern and three plant densities.

Fig. 10. CGR variation in petalless rapeseed at square planting pattern and three plant densities.

Fig. 11. CGR variation in petalless rapeseed at rectangular planting pattern and three plant densities.

Fig. 12. CGR variation in petalless rapeseed at rectangular planting pattern and three plant densities.
شکل 13- روند سرعت جذب خالص در رقم گلبرگ دار با آراشی کاشت مربع در سه تراکم پویه Fig. 13. NAR variation in petalled rapeseed at square planting pattern and three plant densities.

شکل 14- روند سرعت جذب خالص در رقم بدون گلبرگ با آراشی کاشت مربع در سه تراکم پویه Fig. 14. NAR variation in apetalous rapeseed at square planting pattern and three plant densities.

شکل 15- روند سرعت جذب خالص در رقم گلبرگ دار با آراشی کاشت مستطیل در سه تراکم پویه Fig. 15. NAR variation in petalled rapeseed at rectangular planting pattern and three plant densities.

شکل 16- روند سرعت جذب خالص در رقم بدون گلبرگ با آراشی کاشت مستطیل در سه تراکم پویه Fig. 16. NAR variation in apetalous rapeseed at rectangular planting pattern and three plant densities.
Table 5. Analysis of variance of radiation use efficiency and light extinction coefficient in apetalous and petalled rapeseed cultivars in different planting patterns and plant densities flowers.

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>Mean Squares (df)</th>
<th>Replication (R)</th>
<th>Planting pattern (PP)</th>
<th>Cultivar (C)</th>
<th>Plant Density (D)</th>
<th>P.p × C</th>
<th>PP × D</th>
<th>C × D</th>
<th>C × PP × D</th>
<th>Error (a)</th>
<th>Error (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kar</td>
<td>Non-kar</td>
<td>Kar</td>
<td>Non-kar</td>
<td>Kar</td>
<td>Non-kar</td>
<td>Kar</td>
<td>Non-kar</td>
<td>Kar</td>
<td>Non-kar</td>
<td>Kar</td>
</tr>
<tr>
<td>Drageh Azadi</td>
<td>2</td>
</tr>
<tr>
<td>Mean Squares (g MJ m⁻²)</td>
<td>0.0000013²</td>
<td>0.00000033²</td>
<td>0.04478⁴</td>
<td>0.5298⁴</td>
<td>0.0023²</td>
<td>0.04293²</td>
<td>0.0682⁴</td>
<td>0.0013²</td>
<td>0.00000043²</td>
<td>0.000000314²</td>
<td></td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% probability levels, respectively. ns: Non-Significant.

Table 6- Mean comparison of radiation use efficiency and light extinction coefficient in apetalous and petalled rapeseed cultivars in square (S.P.P.) and rectangular (R.P.P) planting patterns

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Radiation use efficiency (g MJ m⁻²)</th>
<th>Light extinction coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main effect of planting pattern</td>
<td></td>
</tr>
<tr>
<td>Petalled</td>
<td>2.21 c</td>
<td>0.48 c</td>
</tr>
<tr>
<td>Apetalous</td>
<td>2.42 a</td>
<td>0.53 c</td>
</tr>
<tr>
<td></td>
<td>Arable mixing</td>
<td></td>
</tr>
<tr>
<td>Petalled</td>
<td>2.10 d</td>
<td>0.47 d</td>
</tr>
<tr>
<td>Apetalous</td>
<td>2.34 b</td>
<td>0.49 b</td>
</tr>
<tr>
<td></td>
<td>Arable mixing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.P.P</td>
<td></td>
</tr>
<tr>
<td>Petalled</td>
<td>2.32 a</td>
<td>0.506 a</td>
</tr>
<tr>
<td>Apetalous</td>
<td>2.22 b</td>
<td>0.482 b</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level- using Tukey’s Test.
جدول ۷- مقایسه میانگین کارایی استفاده از انرژی رادیايشی و شیب انقراض در دو مدل کاشت و سه انواع نسبت به گل گذاری در دو رقم کلرک گذار و بدون کلرک گذار

<table>
<thead>
<tr>
<th>اندازه‌گیری‌ها</th>
<th>گل گذاریکردن</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.P.P.</td>
<td>۷۹۳</td>
<td>۷۹۳</td>
</tr>
<tr>
<td>۳۳</td>
<td>۲.۱۵ e</td>
<td>۰.۶۱ a</td>
<td>۰.۶۱ a</td>
</tr>
<tr>
<td>۶۷</td>
<td>۲.۶۳ a</td>
<td>۰.۴۷ c</td>
<td>۰.۴۷ c</td>
</tr>
<tr>
<td>۱۳۳</td>
<td>۲.۱۸ c</td>
<td>۰.۴۴ d</td>
<td>۰.۴۴ d</td>
</tr>
<tr>
<td></td>
<td>R.P.P.</td>
<td>۷۹۳</td>
<td>۷۹۳</td>
</tr>
<tr>
<td>۳۳</td>
<td>۲.۰۹ f</td>
<td>۰.۵۹ b</td>
<td>۰.۵۹ b</td>
</tr>
<tr>
<td>۶۷</td>
<td>۲.۳۹ b</td>
<td>۰.۴۶ c</td>
<td>۰.۴۶ c</td>
</tr>
<tr>
<td>۱۳۳</td>
<td>۲.۱۷ d</td>
<td>۰.۳۹ e</td>
<td>۰.۳۹ e</td>
</tr>
</tbody>
</table>

اثر اصلی تراکم

<table>
<thead>
<tr>
<th>اندازه‌گیری‌ها</th>
<th>گل گذاریکردن</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳</td>
<td>۲.۱۲ c</td>
<td>۰.۶۰ a</td>
<td>۰.۶۰ a</td>
</tr>
<tr>
<td>۶۷</td>
<td>۲.۵۰ a</td>
<td>۰.۴۶ b</td>
<td>۰.۴۶ b</td>
</tr>
<tr>
<td>۱۳۳</td>
<td>۲.۱۷ b</td>
<td>۰.۴۱ c</td>
<td>۰.۴۱ c</td>
</tr>
</tbody>
</table>

جدول ۸- مقایسه میانگین کارایی استفاده از انرژی رادیايشی و شیب انقراض در دو مدل کاشت و سه انواع نسبت به گل گذاری در دو رقم کلرک گذار و بدون کلرک گذار

<table>
<thead>
<tr>
<th>اندازه‌گیری‌ها</th>
<th>گل گذاریکردن</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳</td>
<td>۲.۰۰ f</td>
<td>۰.۵۹ b</td>
<td>۰.۵۹ b</td>
</tr>
<tr>
<td>۶۷</td>
<td>۲.۳۳ b</td>
<td>۰.۴۴ d</td>
<td>۰.۴۴ d</td>
</tr>
<tr>
<td>۱۳۳</td>
<td>۲.۱۴ e</td>
<td>۰.۴۰ f</td>
<td>۰.۴۰ f</td>
</tr>
<tr>
<td>بدون گل گذاری</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۳</td>
<td>۲.۲۵ c</td>
<td>۰.۶۲ a</td>
<td>۰.۶۲ a</td>
</tr>
<tr>
<td>۶۷</td>
<td>۲.۶۹ a</td>
<td>۰.۴۹ c</td>
<td>۰.۴۹ c</td>
</tr>
<tr>
<td>۱۳۳</td>
<td>۲.۲۰ d</td>
<td>۰.۴۳ e</td>
<td>۰.۴۳ e</td>
</tr>
</tbody>
</table>

اثر اصلی رقم

<table>
<thead>
<tr>
<th>اندازه‌گیری‌ها</th>
<th>گل گذاریکردن</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
<th>شیب انقراض (گرم بر مترمربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پطلالوس</td>
<td>۲.۱۶ b</td>
<td>۰.۴۸ b</td>
<td>۰.۴۸ b</td>
</tr>
<tr>
<td>بدون گل گذاری</td>
<td>۲.۳۸ a</td>
<td>۰.۵۱ a</td>
<td>۰.۵۱ a</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey’s Test.
سطح بر ک، مانند ماده خشک و سرعت جذب خاص\[...\]

کلیل کنار است.

References

احمدی، ع. 1975. اثر تراکم کلیل کنار و آرامش کاشت بر عملکرد و خصوصیات \(\text{Brassica napus L.} \) شرکت در نوعکارشناسی ارزش؛ دانشکده کشاورزی دانشگاه گیلان.

Allen, E. J., and D. J. Morgan. 1975. A quantitative comparison of the growth, development and yield of...

Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous flowres and petalled flowers rapeseed (*Brassica napus* L.) cultivars

Ozoni Davaji, A¹, M. Esfahani², H. Sami Zadeh³ and M. Rabiei⁴

ABSTRACT

In order to evaluate the effects of plant density and planting pattern on yield, yield components of apetalous flowers and petalled rapeseed, a field experiment was conducted in Rice Research Institute of Iran located in Rasht in 2005-2006. The experimental design was arranged as a split plot-factorial in a randomized complete block with three replications in which, planting pattern (rectangular and square) assigned to main plot and two rapeseed cultivars (petalled = Hyola 401 and apetalous = Hylite 201) and plant densities (33, 67 and 133 plants per unit area) as factorial in sub-plots. Results showed that there were significant differences between cultivars, plant density and planting patterns in growth indices and radiation use efficiency (RUE). At the flowering, the leaf area index in apetalous cultivar was 3% greater than the petalled rapeseed (3.22 and 3.12, respectively). Dry Matter of apetalous rapeseed was 11% higher than the petalled rapeseed (1441 and 1280 g/m², respectively). Similar results were obtained for crop growth rate (CGR) and net assimilation rate (NAR) (1.5 and 23%, respectively). Maximum LAI and TDM were obtained earlier with the high plant density. Leaf area index, Dry Weight, CGR and NAR in square planting pattern were higher than the rectangular planting pattern. Radiation use efficiency in apetalous rapeseed was 9.2% higher than the petalled cultivar (2.38 and 2.16 g/MJ) which caused 14.6% increase in grain yield.

Key words: Planting pattern, Plant density, Growth indices, Radiation Use Efficiency, Apetaluos, Petalled, Rapeseed (*Brassica napus* L.).

Received: December, 2007
1- Former M.Sc. Student, Faculty of Agricultural Sciences, University of Gilan, Rasht, Iran.
2- Assistant Prof., Faculty of Agricultural Sciences, University of Gilan, Rasht, Iran (Corresponding author)
3- Assistant Prof., Faculty of Agricultural Sciences, University of Gilan, Rasht, Iran.
4- Researcher, Rice Research Institute of Iran (RRII), Rasht, Iran.