Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous and petalled flowers rapeseed (Brassica napus L.) cultivars

Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous and petalled flowers rapeseed (Brassica napus L.) cultivars

شکله:

وژه‌ی کلی‌ی آرایش کاشت، تراکم بونه، شاخه‌ی رشد، کاراتار؛ مصرف تابش، کلرای بدون گلبرگ
<table>
<thead>
<tr>
<th>No.</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crop Growth Rate</td>
</tr>
<tr>
<td>2</td>
<td>Apetalous flowers</td>
</tr>
<tr>
<td>3</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>4</td>
<td>Canopy Architecture</td>
</tr>
<tr>
<td>5</td>
<td>Net Assimilation Rate</td>
</tr>
</tbody>
</table>
بار آراش کاشت و نراک گونه بر...

جارب طیفی آماری و سطح تغذیه

1- Total Dry Matter
2- Photosynthetic Active Radiation
3- Radiation Use Efficiency

اگر می‌خواهید شمای را بررسی کنید، می‌توانید با ضرایب دیگری از آن کنید. به طور مثال:

\[TDW = W = e^{a+bt+ct} \]

که \(TDW \) کل وزن خشک و \(W \) وزن خشک مستقیم است. در این نمونه، با استفاده از ضرایب مختلفی از آن کنید.
وزن خشک تابش (Rue) به‌شکل زیر به‌کار می‌رود:

\[RUE = R_G = N \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌برداری و اندازه‌گیری‌های زمین‌شناسی و فیزیولوژیکی به‌کار می‌رود.

کارا و معروف تابش (RUE) به‌عنوان معیار معروف تابش به‌شکل زیر استفاده می‌شود:

\[RUE = \frac{1}{100} \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌برداری و اندازه‌گیری‌های زمین‌شناسی و فیزیولوژیکی به‌کار می‌رود.

برای محاسبه کارا و معروف تابش (RUE) به‌عنوان معیار معروف تابش به‌شکل زیر استفاده می‌شود:

\[RUE = \frac{1}{100} \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌برداری و اندازه‌گیری‌های زمین‌شناسی و فیزیولوژیکی به‌کار می‌رود.

کارا و معروف تابش (RUE) به‌عنوان معیار معروف تابش به‌شکل زیر استفاده می‌شود:

\[RUE = \frac{1}{100} \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌برداری و اندازه‌گیری‌های زمین‌شناسی و فیزیولوژیکی به‌کار می‌رود.

کارا و معروف تابش (RUE) به‌عنوان معیار معروف تابش به‌شکل زیر استفاده می‌شود:

\[RUE = \frac{1}{100} \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌برداری و اندازه‌گیری‌های زمین‌شناسی و فیزیولوژیکی به‌کار می‌رود.

کارا و معروف تابش (RUE) به‌عنوان معیار معروف تابش به‌شکل زیر استفاده می‌شود:

\[RUE = \frac{1}{100} \times \sum_{i=1}^{n} \frac{LAI}{ln(I_i)} \]

در آن، رگولاری پذیرفته شده توسط SAS و Excel با استفاده از رکورد‌های نمونه‌بردا...
Table 1. Analysis of variance for growth indices in apetalous and petalled flowers rapeseed cultivars at flowering stage, in different planting patterns and plant densities.

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>Mean Squares</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAI</td>
<td>TDM</td>
</tr>
<tr>
<td>Replication (R)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0001**</td>
<td>57.33**</td>
</tr>
<tr>
<td>Planting pattern (PP)</td>
<td>0.1196**</td>
<td>254184.02**</td>
</tr>
<tr>
<td>Error (a)</td>
<td>0.0003</td>
<td>11.44</td>
</tr>
<tr>
<td>Cultivar (C)</td>
<td>0.0936**</td>
<td>232484.69**</td>
</tr>
<tr>
<td>Plant density (D)</td>
<td>1.9090**</td>
<td>756382.33**</td>
</tr>
<tr>
<td>PP × C</td>
<td>0.0272**</td>
<td>13884.69**</td>
</tr>
<tr>
<td>Error (b)</td>
<td>0.0012**</td>
<td>5552.11**</td>
</tr>
<tr>
<td>C × D</td>
<td>0.0065**</td>
<td>2502.44**</td>
</tr>
<tr>
<td>C × PP × D</td>
<td>0.0067**</td>
<td>2714.11**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns: Non-Significant.

: Significant at the 1% probability level.
Table 2- Mean comparison of plant traits in petalled and apetalous flowers rapeseed at flowering stage in square (S.P.P.) and rectangular (R.P.P.) planting patterns.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>LAI (cm²)</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td>3.15 b</td>
<td>1345 b</td>
<td>2.52 b</td>
<td>0.17 b</td>
</tr>
<tr>
<td>Apetalous</td>
<td>3.30 a</td>
<td>1545 a</td>
<td>2.62 a</td>
<td>0.21 a</td>
</tr>
<tr>
<td>Petalled</td>
<td>3.09 c</td>
<td>1216 d</td>
<td>2.43 c</td>
<td>0.10 d</td>
</tr>
<tr>
<td>Apetalous</td>
<td>3.14 b</td>
<td>1337 c</td>
<td>2.43 c</td>
<td>0.14 c</td>
</tr>
</tbody>
</table>

Main effect of planting pattern

<table>
<thead>
<tr>
<th>S.P.P.</th>
<th>3.23 a</th>
<th>1444 a</th>
<th>2.57 a</th>
<th>0.18 a</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.P.P.</td>
<td>3.11 b</td>
<td>1267 b</td>
<td>2.43 b</td>
<td>0.11 b</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey's Test.

Table 3- Means comparison of plant traits of petalled and apetalous flowers rapeseed cultivars at flowering stage in square (S.P.P.) and rectangular (R.P.P.) planting patterns and different plant densities.

<table>
<thead>
<tr>
<th>Density</th>
<th>LAI (cm²)</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.P.P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.04 c</td>
<td>1362 c</td>
<td>2.53 c</td>
<td>0.14 c</td>
</tr>
<tr>
<td>67</td>
<td>3.68 a</td>
<td>1712 a</td>
<td>2.81 a</td>
<td>0.34 a</td>
</tr>
<tr>
<td>133</td>
<td>2.98 d</td>
<td>1261 d</td>
<td>2.38 d</td>
<td>0.08 d</td>
</tr>
<tr>
<td>R.P.P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.01 c</td>
<td>1206 e</td>
<td>2.40 d</td>
<td>0.09 d</td>
</tr>
<tr>
<td>67</td>
<td>3.56 b</td>
<td>1571 b</td>
<td>2.62 b</td>
<td>0.22 b</td>
</tr>
<tr>
<td>133</td>
<td>2.77 e</td>
<td>1054 f</td>
<td>2.27 e</td>
<td>0.04 e</td>
</tr>
</tbody>
</table>

Main effect of plant density

<table>
<thead>
<tr>
<th>S.P.P.</th>
<th>3.03 b</th>
<th>1283 b</th>
<th>2.46 b</th>
<th>0.11 b</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.P.P.</td>
<td>3.62 a</td>
<td>1641 a</td>
<td>2.71 a</td>
<td>0.28 a</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey's Test.

شاخص سطح برك مرتبوط به رقم گاز کلیبر کرک در آراش کرک و تراکم گاز بود در متریمبوب بود (شکل ۱). از طرفی تراکم گاز بود باعث پایینی بود که تراکم گاز کلیبر کرک در سطح برك ظاهر گردید. درصد معیار بود (جدول ۱) چند مقدار می‌باشد، درصد معیار از آراش کرک کاست، رقم و تراکم گاز و اثر برمکش آراش کرک سطح برك در سطح برك را که روبرو کرک نادرست و باعث می‌شود سطح برك بیشتر کرکش یافته و دوام بیشتری داشته باشد.
Table 4- Mean comparison of plant traits of petalled and apetalous rapeseed cultivars at flowering stage in different plant densities.

<table>
<thead>
<tr>
<th>Density</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1249 d</td>
<td>2.44 d</td>
<td>0.10 d</td>
</tr>
<tr>
<td>67</td>
<td>1515 b</td>
<td>2.67 b</td>
<td>0.26 b</td>
</tr>
<tr>
<td>133</td>
<td>1077 f</td>
<td>2.32 e</td>
<td>0.04 f</td>
</tr>
<tr>
<td>Apetalous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1319 c</td>
<td>2.49 c</td>
<td>0.14 c</td>
</tr>
<tr>
<td>67</td>
<td>1767 b</td>
<td>2.76 a</td>
<td>0.30 a</td>
</tr>
<tr>
<td>133</td>
<td>1437 b</td>
<td>2.32 e</td>
<td>0.08 e</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey's Test.

Main effect of cultivar

<table>
<thead>
<tr>
<th>Density</th>
<th>TDM (g/m²)</th>
<th>CGR (g/m²/day)</th>
<th>NAR (g/m²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1280 b</td>
<td>2.48 b</td>
<td>0.13 b</td>
</tr>
<tr>
<td>67</td>
<td>1441 a</td>
<td>2.52 a</td>
<td>0.17 a</td>
</tr>
<tr>
<td>Apetalous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Dry matter accumulation in petalled rapeseed at square planting pattern and three plant densities.

Fig. 2. Dry matter accumulation in petalled rapeseed at rectangular planting pattern and three plant densities.

Fig. 3. Dry matter accumulation in apetalous rapeseed at square planting pattern and three plant densities.

Fig. 4. Dry matter accumulation in apetalous rapeseed at rectangular planting pattern and three plant densities.
کلبرک کود (CGR) کرم بر متر مربع در روز، شکل جدول. رقم بدیل کلبرک به دلیل داشتن سطح بر ک
شر و توافق ماده خشک بستر نسبت به رقم
کلبرک دارد، سرعت رشد [CGR] داشت و [آز]
از به دلیل نفوذ بر تنش باین به داخل پوشش [CGR]
ار از [CGR] در همان طور که مشاهده شد در اول آن رشد، به
دالک کافی نبود [CGR]. به دلیل کافی نبود [CGR] بر مصرف
جذب تنش، کوتاه بودن رو و دمای [CGR] هوا، گله
از سرعت رشد کمتری برخوادر داده بوده به شکل نیا
مراجعه شود. با خروج از مرحله روز و افزای
سرعت برک و در نتیجه بهره [CGR] از تنش
خورشید [CGR] تنیب، ماده خشک در واحد س
افزا [CGR] و به تبع آن سرعت رشد کاهش نیاز و رشد
افزا [CGR] داشت. در مراحل بعدی، بر اثر ساندازی
اندام [CGR] بر روی برگ کاه شده و کاهش فرد
[CGR] شده به سرعت کاهش [CGR]. پو و همکاران،
[CGR] رابطه با [CGR] از محققان معقدان که
[CGR] با سطح فوستری کندن دارد، بهطوری که در
تراکمی [CGR] مطلوب توزیع [CGR] و سطح برک
[CGR] در واحد سطح کوخلوک ترشده و برک[CGR]
[CGR] کند و در نتیجه فاکتور [CGR]
[CGR] (Sidlauskas and Bernotas, 2003) و
[CGR] سرعت رشد
[CGR] و [CGR] تنش باین جذب شده توسط برک[CGR]
[CGR] رابطه مستقیم وجود دارد، به طوری که در ابتدای
فصل رشد به دلیل کم موجود سطح درافته کنندن تنش
برک [CGR] ان در درافته تنش کم است، در نتیجه ماده
کارا (مصرف ناشی) و آرازاس داده‌ی حاصل از کار (مصرف ناشی)
نتیجه‌ای از تحقیق تغییر در سطح برق و همچنین افزایش.
تفسیر در مقایسه با تغییر در اثر تغییر در سطح برق به مرحله

کارا (مصرف ناشی) و آرازاس داده‌ی حاصل از کار (مصرف ناشی)
نتیجه‌ای از تحقیق تغییر در سطح برق و همچنین افزایش.
تفسیر در مقایسه با تغییر در اثر تغییر در سطح برق به مرحله

کارا (مصرف ناشی) و آرازاس داده‌ی حاصل از کار (مصرف ناشی)
نتیجه‌ای از تحقیق تغییر در سطح برق و همچنین افزایش.
تفسیر در مقایسه با تغییر در اثر تغییر در سطح برق به مرحله

کارا (مصرف ناشی) و آرازاس داده‌ی حاصل از کار (مصرف ناشی)
نتیجه‌ای از تحقیق تغییر در سطح برق و همچنین افزایش.
تفسیر در مقایسه با تغییر در اثر تغییر در سطح برق به مرحله

کارا (مصرف ناشی) و آرازاس داده‌ی حاصل از کار (مصرف ناشی)
نتیجه‌ای از تحقیق تغییر در سطح برق و همچنین افزایش.
شکل ۶- شاخص سطح برگ در رقم بدون گلبرگ در پالایش کشت در سه تراکم بوتیه
Fig. 6. LAI variation in apetalous rapeseed at square planting pattern and three plant densities

شکل ۷- شاخص سطح برگ در رقم گلبرگ دارا در پالایش کشت مستطیل در سه تراکم بوتیه
Fig. 7. LAI variation in petalled rapeseed at rectangular planting pattern and three plant densities.
Fig. 9. CGR variation in petalled rapeseed at square planting pattern and three plant densities.

Fig. 10. CGR variation in apetalous rapeseed at square planting pattern and three plant densities.

Fig. 11. CGR variation in petalled rapeseed at rectangular planting pattern and three plant densities.

Fig. 12. CGR variation in apetalous rapeseed at rectangular planting pattern and three plant densities.
Fig. 13. NAR variation in petalled rapeseed at square planting pattern and three plant densities.

Fig. 14. NAR variation in apetalous rapeseed at square planting pattern and three plant densities.

Fig. 15. NAR variation in petalled rapeseed at rectangular planting pattern and three plant densities.

Fig. 16. NAR variation in apetalous rapeseed at rectangular planting pattern and three plant densities.
جدول ۵- مقایسه میانگین کارایی مصرف تابش و ضریب استحلاک نوری در دو رقم کلر کددار و بدون کلر کد در اواپالس کاشته‌ها.

Table 5. Analysis of variance of radiation use efficiency and light extinction coefficient in apetalous and potted rapeseed cultivars in different planting patterns and plant densities flowers.

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>درجه آزادی</th>
<th>کارایی مصرف تابش</th>
<th>ضریب استحلاک نوری</th>
<th>Mean Squares مربعات میانگین</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>0.0000013**</td>
<td>0.00002**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>آپالس کاشته</td>
<td>1</td>
<td>0.0924**</td>
<td>0.005**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای (a)</td>
<td>2</td>
<td>0.00000033</td>
<td>0.0000322**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم (C)</td>
<td>1</td>
<td>0.44578**</td>
<td>0.0138**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم (D)</td>
<td>2</td>
<td>0.5298**</td>
<td>0.115**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اپالس کاشته × رقم (C)</td>
<td>1</td>
<td>0.0023**</td>
<td>0.00189**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تراکم (D) × رقم (C)</td>
<td>2</td>
<td>0.04293**</td>
<td>0.000843**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم (C) × تراکم (D)</td>
<td>2</td>
<td>0.0682**</td>
<td>0.0007**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>خطای (b)</td>
<td>20</td>
<td>0.00000043</td>
<td>0.0000314</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* و **: Significant at 5% and 1% probability levels, respectively.
ns: Non-Significant.

وبت: در سطوح احتمال ۵% و ۱% از تفاوت معنی‌دار می‌باشد.

جدول ۶- مقایسه میانگین کارایی مصرف تابش و ضریب استحلاک نوری در دو رقم کلر کددار و بدون کلر کد در اواپالس کاشته‌ها.

Table 6- Mean comparison of radiation use efficiency and light extinction coefficient in apetalous and petalled rapeseed cultivars in square (S.P.P.) and rectangular (R.P.P) planting patterns.

<table>
<thead>
<tr>
<th>کاشت</th>
<th>S.P.P</th>
<th>R.P.P</th>
<th>تراکم</th>
<th>گلدار</th>
<th>گلدار</th>
<th>ضریب استحلاک نوری (g MJ⁻¹ m⁻²)</th>
<th>ضریب استحلاک نوری (g MJ⁻¹ m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petalled</td>
<td>۲.۲۱ c</td>
<td>۲.۱۰ d</td>
<td>۰.۴۸ c</td>
<td>۰.۴۷ d</td>
<td>۰.۴۹ b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apetalous</td>
<td>۲.۴۲ a</td>
<td>۲.۳۴ b</td>
<td>۰.۵۳ c</td>
<td>۰.۵۱ a</td>
<td>۰.۴۸ b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level- using Tukey’s Test.

کارایی مصرف تابش بهتر بودند. نام و همکاران (Rao, et al., 1991) در آزمونی که بر روی کارا با سه تراکم که از بر تراکم بودند به وسیله مترمیتر انجم داده بودند نتیجه‌گیری کردند که کارا مصرف تابش برای سه تراکم بهتر بود.
Table 7 - Mean comparison of radiation use efficiency and light extinction coefficient in apetalous and petalled rapeseed cultivars in two planting patterns and three plant densities

<table>
<thead>
<tr>
<th>Density</th>
<th>Petalled</th>
<th>Apetalous</th>
<th>Main effect of plant density</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2.15 c</td>
<td>0.61 a</td>
<td>2.12 c 0.60 a</td>
</tr>
<tr>
<td>67</td>
<td>2.63 a</td>
<td>0.47 c</td>
<td>2.39 b 0.46 b</td>
</tr>
<tr>
<td>133</td>
<td>2.18 c</td>
<td>0.44 d</td>
<td>2.17 d 0.41 c</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey’s Test.

Table 8 - Mean comparison of radiation use efficiency and light extinction coefficient in apetalous and petalled rapeseed cultivars in three plant densities

<table>
<thead>
<tr>
<th>Density</th>
<th>Petalled</th>
<th>Apetalous</th>
<th>Main effect of cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>2.00 f</td>
<td>0.59 b</td>
<td>2.25 c 0.62 a</td>
</tr>
<tr>
<td>67</td>
<td>2.33 b</td>
<td>0.44 d</td>
<td>2.69 a 0.49 c</td>
</tr>
<tr>
<td>133</td>
<td>2.14 e</td>
<td>0.40 f</td>
<td>2.20 d 0.43 e</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter are not significantly different at the 5% probability level using Tukey’s Test.
References

Allen, E. J., and D. J. Morgan. 1975. A quantitative comparison of the growth, development and yield of ...

Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous flowres and petalled flowers rapeseed (Brassica napus L.) cultivars

Ozoni Davaji, A1, M. Esfahani2, H. Sami Zadeh3 and M. Rabiei4

ABSTRACT

In order to evaluate the effects of plant density and planting pattern on yield, yield components of apetalous flowers and petalled rapeseed, a field experiment was conducted in Rice Research Institute of Iran located in Rasht in 2005-2006. The experimental design was arranged as a split plot-factorial in a randomized complete block with three replications in which, planting pattern (rectangular and square) assigned to main plot and two rapeseed cultivars (petalled = Hyola 401 and apetalous = Hylite 201) and plant densities (33, 67 and 133 plants per unit area) as factorial in sub-plots. Results showed that there were significant differences between cultivars, plant density and planting patterns in growth indices and radiation use efficiency (RUE). At the flowering, the leaf area index in apetalous cultivar was 3% greater than the petalled rapeseed (3.22 and 3.12, respectively). Dry Matter of apetalous rapeseed was 11% higher than the petalled rapeseed (1441 and 1280 g/m², respectively). Similar results were obtained for crop growth rate (CGR) and net assimilation rate (NAR) (1.5 and 23%, respectively). Maximum LAI and TDM were obtained earlier with the high plant density. Leaf area index, Dry Weight, CGR and NAR in square planting pattern were higher than the rectangular planting pattern. Radiation use efficiency in apetalous rapeseed was 9.2% higher than the petalled cultivar (2.38 and 2.16 g/Mj) which caused 14.6% increase in grain yield.

Key words: Planting pattern, Plant density, Growth indices, Radiation Use Efficiency, Apetaluos, Petalled, Rapeseed (Brassica napus L.).