Determination of potential productivity of Red clover varieties under different enviromental conditions

Mohammad Zamanian, J. Nourbakhshian, Sh. Faghihian, E. Nourbakhshian, M. H. Azadi, and Z. Milani

چکیده

به‌منظور تعیین ساعت‌گرایی و پتانسیل تولید علفه واریته‌های شیاهی قرمز در شرایط مختلف، ان تحقیق در قالب یک‌کلندهای کامل تصادفی با شرایط مرطوبی گریز و در جهت کناره‌ی کشت پایه‌ای در ارتفاعاتی از تحقیقاتی کرج‌شهر کردستان، سنندج اراک، گرمان و کرمانشاه سال‌های ۱۳۵۸-۱۳۶۱ آجای اجرای آزمایش‌های نیش نشان داد. در حالات مختلفی با شرایط مختلف واریته‌های شیاهی قرمز در سال‌ها و مناطق مختلف از تحقیقاتی کرج‌شهر نظر عملکرد علفه واریته‌ها و ارتباطات میانگین دو ساله نماند که نتایج آزمایش بسیار معنی‌دار و واریه‌های شیاهی قرمز در سال‌ها و مناطق مختلف حاکی از آن بود که در کرج و شهرکرد واریته‌های رکونی و کلوزرا. در سنندج و گرمان واریته‌های رکونی و بوکاریار، کرمانشاه و اراک واریته‌های رکونی و تولیدی فانو و تولیدی کرج جزو واریته‌های برتر بودند. مناطق و سال‌ها بر تولید علفه واریه‌های شیاهی قرمز تأثیر معمول از داشتن‌های طویلی که عملکرد علفه تر این واریه‌های در مناطق بین ۱۳۵۸-۱۳۶۱ نم و عملکرد گرمان که‌ک‌شیاهی داشت امکان‌داد که نتایج معموله در سال اول بیشتر و سال سوم که‌ک‌شیاهی تولید علفه را دارا بود. از واریه‌های شیاهی قرمز، کلوزرا که حجم ترین و تولیدی فانو حساس ترین طبقه بندی سطحی بودند. با اینکه از هر منطقه واریه‌های شیاهی خاصی برتری داشتند ولی به طور کلی برای کلیه مناطق مورد آزمایش واریه‌های کرج و رکونی کلوزرا و رکونی ساعت‌گرایی و واریه‌های شیاهی قرمز کرد. پژوهش [یک سال داد و را برای منطقه‌ی باز توصیه می‌شد.]

واژه‌های کلیدی: شیاهی قرمز، عملکرد علفه، تر، عملکرد علفه شدت، ساعت‌گرایی، چین برداری و شرایط محیطی

تاریخ دریافت: ۱۳۸۶/۳/۳

پذیرش نهایی مسئول تحقیقات اصلاح و نهایی نهال و پر (مکاتبه کنند)

پژوهش‌های مربوط به مزیت‌های تحقیقات کشاورزی و منابع طبیعی استان چهارمحال و بختیاری

کارشناسی تحقیقات کشاورزی و منابع طبیعی استان کردستان

کارشناسی مربوط به مزیت‌های تحقیقات کشاورزی و منابع طبیعی استان مرکزی

پژوهش‌های مربوط به مزیت‌های تحقیقات کشاورزی و منابع طبیعی استان گیلان

کارشناسی مربوط به مزیت‌های تحقیقات کشاورزی و منابع طبیعی استان کرمانشاه

تقلیل

345
همکاران (1998) ردش مجدد لکومیته علوفهای گزارش دادند که از نظر...

شیرین وثنی (1996) میزان پرتوی و بویش سطح سیب،...

شیمان ان جنوب شرقی اروپا و اسیای صغری است...

عملکرد علوفه بالای آقازاری و بزرگ‌السید و...

خاک و قابلیت استحکام علوفه (Zajac et al., 1998)...

و澳کاچی در استرالیا گزارش دادند که از بین...

شیرین وثنی از سازگاری بهتر برخوردار بود. زاجاک...

و همکاران (1998) این آزمایش نشان داد که اثر...

Wojcik، 1982 و جویجک (1998) در آزمایشی...

شیرین وثنی در انتظار فصل رشد گزارش دادند که خاک مهم‌ترین فاکتور تعیین کننده...

ترکیب بوته است. (Wassermant et al.، 1998) این آزمایش نشان داد که اثر...

در Valieghar et al.، 1998 و Nada K...

اشراقیه تبلیغاتی (Puia et al.، 1982; Bowley et al.، 1987)

(William، 2000) مهم‌ترین عامل مؤثر بر...

TOPLING علوفه کیاها علوفهای را باخت خاک، H...

پارک و برانچ و (Rinker and Rampton، 1985)...

کمی از مختلف شیفت در امکان با محقوقه زمانی...

واویل اسفند تن اواخر ابان کاوش به دندام می‌شود و در...

یافته‌ها شامل و گربه شیرینی جهت سال‌های معمولاً در...

بهریا ماهیای پایی کشت می‌کنند در کالایی در شیافت می‌کنم...

شیفت در کشت به‌های ماهیای بهمن اواخر اسفند و...

گزارش داد که این اوقات عمکرد علوفه خشک...

شیرین وثنی را در هند در سال اول و دوم کشت به ترتیب...

پارک و برانچ و (Rinker and Rampton، 1985)...

کمی از مختلف شیفت در امکان با محقوقه زمانی...

واویل اسفند تن اواخر ابان کاوش به دندام می‌شود و در...

یافته‌ها شامل و گربه شیرینی جهت سال‌ها م عمولاً در...

بهریا ماهیای پایی کشت می‌کنند در کالایی در شیافت می‌کنم...

شیفت در کشت به‌های ماهیای بهمن اواخر اسفند و...
جهت اجرای این طرح قطعه زمینی به ساخته حدود ۷۴۳ مترمربع در بانه سال قبل و یا در اوائل بهار شده زمده بیه و همراه شرک برای افزایش خاک کلیک کروم کود فسفات (P2O5) و کلیک کروم کود نیتروژ ن (N) در هکتار بخش و زیر خاک ۵۱۴ در ادامه عملیات تهیه زمین در انتهای شهریه و دو دیگر عمود بر هم زده شد و تسطیح زمین توسط لوله انجام شد. هم سپس فارنْر اسپت بندهای کریگر کریگر قطعه نام واریته‌های مورد آزمایش‌های انجام داده (درکونین) تولید فاکس (کلیبر) تولیدی کریگر محیط شهر کرد که رقم محیط شهر کرد بعنوان شاهد در نظر گرفته شد. عملیات رازی مثل سلشکا، آبیاری و حفظ علف‌های هرز دقیق از کشت‌ها باده آبیاری انجام شد. برای تعیین عملکرد علفه به‌صورت روز پس از ظهور اولین گل‌ها در مزرعه، آن‌ها به‌صورت با حذف نم متر متر از ابدا و انتهای خطوط از سطح پنجم تکه درشت و بلافاصله توزین و عملکرد علفه تعبیر کلوپ کرم در واحد از راه امنیت و یک تن در هکار ۲۸۳۱۶۲/۵/۲۸ از علفه عمر بانی کلوپ گرمی به طور تصادفی در از وحد امکان‌پذیری جا و با امکان‌پذیری متقابل و در دمای ۱۵ درجه سانتی‌گراد به مدت ۲ ساعت در اون انتخاب کریگ و سپس عملکرد ماده خشک در هکار به مطیع ارزیابی میزان اولیک واریته‌ها (Erysiphe polygoni) بیشتر قرار در سفید ک سطحی شده، قرار در سفید ک سطحی شده در سال ۱۹۸۵ در مزرعه سفید ۲۸۳۱۷۱/۵/۳۸ هکتاری مؤسسه تحقیقات اصلاح و بهینه سازی قدیم و بذر در کریگ و ایکساک‌ها تحقیقات شرکت کرده، کرکان ارک، کرکان، ساندیک، مراقب یا واردات و در مراقب به اندازه‌ای کلی بزرگ کرده‌اند.

مواد و روش‌ها

به منظور بررسی تعبیر سازگاری عملکرد علفه و صفات مورفولوژیک ارقام شرکت‌های بزرگ‌تر، سال‌های ۱۹۸۴ و ۱۹۸۵ در مزرعه پیروزی مکانیکی بزرگ‌تر وابسته تحقیقات اصلاح و بهینه سازی قدیم و بذر در کریگ و ایکس‌ها تحقیقات شرکت کرده، کرکان، ارک، کرکان، ساندیک، مراقب به اندازه‌ای کلی بزرگ کرده‌اند.
در این ارزیابی از نمره‌دهی به قرار زیر ذیل استفاده شد:

<table>
<thead>
<tr>
<th>نوع ارزیابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون علامت آزمودگی</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

نتایج نشان داد که در مجموع سالها بین مناطق از نظر اختلاف وجود دارد. همچنین مشخص شد بین واریته از نظر تولید علوفه تفاوت معنی‌دار وجود دارد و چنانچه این واریته‌ها در مناطق مختلف آب و هوایی کشت می‌تواند عملکرد های متفاوتی تولید نمایند.

رنگ‌دان می‌تواند عملکرد های متفاوتی تولید نمایند و همین موضوع باعث معنی‌دار شدن اندازه‌گیری‌های واریته‌ای واریته‌ای در شرایط مختلف سال می‌شود. این نتایج می‌تواند در تهیه قرار کردن فیلوئیت به صورت دریافت مناطق مختلف سال و واریته‌ای واریته‌ای واریته‌ای بر روی عملکرد تر وخت علوفه شیب از نظر اماری در سطح (ANOVA) یا پیک درصد معنی‌دار اثر سال غیر معنی‌دار در بود (جدول 1).

جدول 1. جدول ترکیبی آمار معنی‌داری برای تولید علوفه ترشحی و خشک شیراز قرمز در سال‌ها و مناطق مختلف

<table>
<thead>
<tr>
<th>(MS)</th>
<th>درجه آزادی</th>
<th>عملکرد علوفه ترشحی</th>
<th>عملکرد علوفه خشک</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (L)</td>
<td>5</td>
<td>13697.22 **</td>
<td>336.65 **</td>
</tr>
<tr>
<td>R (L)</td>
<td>18</td>
<td>298.75 **</td>
<td>406.70 **</td>
</tr>
<tr>
<td>Year (Y)</td>
<td>1</td>
<td>2957.31 **</td>
<td>18.00 **</td>
</tr>
<tr>
<td>L × Y</td>
<td>5</td>
<td>10652.56 **</td>
<td>198.72 **</td>
</tr>
<tr>
<td>RY(L)</td>
<td>18</td>
<td>127.95 **</td>
<td>4.41 **</td>
</tr>
<tr>
<td>Variety (V)</td>
<td>5</td>
<td>601.10 **</td>
<td>27.78 **</td>
</tr>
<tr>
<td>L × V</td>
<td>25</td>
<td>265.13 **</td>
<td>11.03 **</td>
</tr>
<tr>
<td>Y × V</td>
<td>5</td>
<td>60.64 **</td>
<td>2.86 **</td>
</tr>
<tr>
<td>Y × L × V</td>
<td>25</td>
<td>101.48 **</td>
<td>3.85 **</td>
</tr>
<tr>
<td>Error</td>
<td>180</td>
<td>19.24</td>
<td>1.19</td>
</tr>
</tbody>
</table>

C.V. (%): 7.67

درصد نتایج (%): 9.57

* and **: Significant at 5 and 1% probability levels, respectively.
ns: Non- significant
پیشترین عملکرد علوفه تر و خشک‌کن تردار آبود. کروه دوم: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداقد} \]
\[\text{کروه دو: ستون‌های اواکس و کروه‌سوم: که عملکرد حداق...
Table 3. Means of fresh and dry forage yield (t/ha) of Red clover varieties in different years and locations.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Dry forage yield</th>
<th>Mean dry forage yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redquin</td>
<td>11.92a</td>
<td>60.44</td>
</tr>
<tr>
<td>Bosa</td>
<td>12.11a</td>
<td>59.26</td>
</tr>
<tr>
<td>Tolidi-e-FAO</td>
<td>11.39b</td>
<td>57.80</td>
</tr>
<tr>
<td>Kulubara</td>
<td>12.01a</td>
<td>59.60</td>
</tr>
<tr>
<td>Tolidi-e-Karaj</td>
<td>11.04b</td>
<td>55.13</td>
</tr>
<tr>
<td>Local-e-Shahr-e-Kord</td>
<td>10.13c</td>
<td>51.08</td>
</tr>
</tbody>
</table>

Means, in each column, followed by similar letter(s) are not significantly different at the 5% level – using Duncan’s Multiple Range Test.
Table 4. Means of fresh and dry forage yield (t/ha) of Red clover varieties in different locations.

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Karaj</th>
<th>Share-e-Kord</th>
<th>Sanandej</th>
<th>Arak</th>
<th>Kermanshah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fresh forage yield</td>
<td>Dry forage yield</td>
<td>Fresh forage yield</td>
<td>Dry forage yield</td>
<td>Fresh forage yield</td>
</tr>
<tr>
<td>Redquin</td>
<td>91.80a</td>
<td>16.42a</td>
<td>40.61n</td>
<td>9.19jkl</td>
<td>62.94cdef</td>
</tr>
<tr>
<td>Bossa</td>
<td>87.93a</td>
<td>15.36ab</td>
<td>38.66n</td>
<td>8.91kl</td>
<td>66.39cd</td>
</tr>
<tr>
<td>Tolid-e-FAO</td>
<td>87.71a</td>
<td>15.87ab</td>
<td>36.56n</td>
<td>8.28l</td>
<td>56.43ghijk</td>
</tr>
<tr>
<td>Kulubara</td>
<td>90.93a</td>
<td>16.01a</td>
<td>40.21n</td>
<td>9.48jkl</td>
<td>68.53c</td>
</tr>
<tr>
<td>Tolid-e-karaj</td>
<td>87.94a</td>
<td>14.97abc</td>
<td>36.15n</td>
<td>8.16l</td>
<td>54.93ghijk</td>
</tr>
<tr>
<td>Local-e-Shahr-e-Kord</td>
<td>81.63b</td>
<td>14.38bcd</td>
<td>36.61n</td>
<td>8.51i</td>
<td>39.10n</td>
</tr>
<tr>
<td>Mean</td>
<td>87.99a</td>
<td>15.50a</td>
<td>38.14d</td>
<td>8.74l</td>
<td>58.05b</td>
</tr>
</tbody>
</table>

Means, in each row and for fresh and dry forage, followed by similar letter(s) are not significantly different at the 5% level – using Duncan’s Multiple Range Test.

Table 4. Continued

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Gorgan (Mean)</th>
<th>(Variance)</th>
<th>C.V. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fresh forage yield</td>
<td>Dry forage yield</td>
<td>Fresh forage yield</td>
</tr>
<tr>
<td>Redquin</td>
<td>46.45lm</td>
<td>8.07l</td>
<td>60.47</td>
</tr>
<tr>
<td>Bossa</td>
<td>51.04klm</td>
<td>9.01kl</td>
<td>59.26</td>
</tr>
<tr>
<td>Tolid-e-FAO</td>
<td>51.24klm</td>
<td>9.07kl</td>
<td>57.80</td>
</tr>
<tr>
<td>Kulubara</td>
<td>50.12klm</td>
<td>9.02kl</td>
<td>59.60</td>
</tr>
<tr>
<td>Tolid-e-Karaj</td>
<td>36.92n</td>
<td>6.52m</td>
<td>55.13</td>
</tr>
<tr>
<td>Shahr-e-Kord</td>
<td>49.17ln</td>
<td>8.79l</td>
<td>51.04</td>
</tr>
<tr>
<td>Mean</td>
<td>47.49c</td>
<td>8.41d</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5. Evaluation of Red clover varieties tolerance to powdery mildew in Karaj

<table>
<thead>
<tr>
<th>Variety</th>
<th>Infection scores</th>
<th>Mean (2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
<td>2004</td>
</tr>
<tr>
<td>Redquin</td>
<td>3.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Bosa</td>
<td>2.25</td>
<td>1.50</td>
</tr>
<tr>
<td>Tolidi-e-FAO</td>
<td>3.75</td>
<td>2.25</td>
</tr>
<tr>
<td>Kulubara</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Tolidi-e-Karaj</td>
<td>3.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Local-e-Shahr-e-Kord</td>
<td>2.25</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Zero = Without symptoms of infection, 1 = 0-25% infected, 2 = 25-50% infected, 3 = 50-75% infected, 4 = 75-100% infected.

References

Taylor and Quesenberry, 1996; Smith et al., 1985

References

Akchundova, V. A. 1995. The realization of potential productivity of *Trifolium pratense* in different growing conditions. Moscow State University, Moscow, Russia. Third International Herbage Seed Conference, Halle, Germany, P. 105.

Leto, J., M. Knezeric, V. Kozumplik and D. Macesic. 1998. Morphological characteristics of Red clover cultivars in the lowland and hilly-mountain region. 63(3): 139-146.

353

Determination of potential productivity of Red clover varieties under different environmental conditions

Zamanian, M.\(^1\), J. Norbakhshian\(^2\), Sh. Yaghmoori\(^3\), A. Talebnejad\(^4\), H. Mokhtarpour\(^5\) and Sh. Soleymanpour\(^6\)

ABSTRACT

To determine potential productivity of Red clover varieties, an experiment was carried out with six treatments and four replications using RCBD, under different environmental conditions in 2002–2004. Results showed that there was a significant difference (p<0.05) between Red clover varieties for fresh and dry forage yield over years and locations. Karaj with 87.99 t ha\(^{-1}\) fresh yield and 15.5 t ha\(^{-1}\) dry forage yield produced the highest yield and Shahr-e-Kord with 38.14 t ha\(^{-1}\) fresh yield and 8.76 t ha\(^{-1}\) dry forage yield produced the lowest yield. Mean comparison of fresh and dry forage yield of Red clover varieties over years and locations showed that the best adapted varieties for different locations as follows: in Karaj and Shahr-e-Kord Redquin and Kulubara; in Sanandaj and Gorgan; Redquin and Bosa, in Kermanshah and Arak Redquin, Tolidi-e-FAO and Tolidi-e-Karaj. Results also showed that years and locations significantly affected on potential productivity of Red clover varieties. Fresh forage yield varied between 91.8-40.2 t ha\(^{-1}\) and dry forage yield varied between 9.02-16.42 t ha\(^{-1}\). In all locations, forage yield of Red clover varieties followed a decreasing trend from the first to the third year, forage yield potential of Red clover varieties was the highest in the first year and the lowest in the third year, respectively. Kulubara was more tolerant, and Tolidi-e-FAO the most sensitive to powdery mildew, respectively. The final results showed that although in each location there were more adapted variety, but Redquin and Kulubara are recommended as wide adapted varieties for all locations.

Key word: Red clover, Fresh forage yield, Dry forage yield, Adaptation, Cutting, Environmental condition.

Received: June 2007

1. Faculty member, Seed and Plant Improvement Institute (SPII), Karaj, Iran. (Corresponding author)
2. Faculty member, Chahar Mahal-e-Bakhtiari Agriculture and Natural Resources Research Center, Shahr-e-Kord, Iran.
3. Research officer, Kordestan Agricultural and Natural Resources Research Center, Sanandaj, Iran.
4. Research officer, Arak Agricultural and Natural Resources Research Center, Arak, Iran.
5. Faculty member, Golestan Agriculture and Natural Resources Research Center, Gorgan, Iran.
6. Research officer, Kermanshah Agricultural and Natural Resources Research Center, Kermanshah, Iran.

355