Response of four commercial potato cultivars to different combinations of plant growth regulators in meristem culture and production of virus free plantlets

طه رودبار شجاعی، نیازعلی سهندی، منصور امیدی، عبدالله مهدی و حمیدرضا عابدی

چکیده
رویه شجاعی، نیازعلی سهندی، منصور امیدی، عبدالله مهدی و حمیدرضا عابدی. واکنش شجاعی، نیازعلی سهندی، منصور امیدی، عبدالله مهدی و حمیدرضا عابدی.

واژه‌های کلیدی: سبی زمینی، هورمون، کشت مرسوم، گیاه عاری از ویروس، میرود

332
در کیاهان زراعی، انواع مختلف از بیورس به علت افزایش هزینه‌های نگهداری و زراعت در سال‌های اخیر استفاده می‌شود. این انواع شامل کلک‌های مختلفی از بیورس می‌باشد.

نگاهی به زمین‌های زراعی

* Solanum tuberosum L.
* هوبرزکوز بوده و بومی نیکره و منشا ان ارتقای اسکورزه‌های جنوبی کشورهای پرو، برزیل، کلمبیا و آکوادور

(عده‌های پرو، بولیوی، کلمبیا و آکوادور)

اولین بار و (Woolf, 1986) معتقد بود که محدودیت زیر کشت استفاده از بیورس در واحد سطح بالا می‌باشد.

ویلولت در اکثر مراحل گزارش داد. وی ملاحظه نمود که در قسمت‌های جوان ریشه گوشه فرکی آن بوده و بیورس موزاییک تراکم و بروز‌ها از در بیورس از روی تری بزرگ خود (White, 1943) و همکاران (1978) در محدودیت تحت شرایط و نهایاً در جریان است.

در بخش از محاسبات اندازه‌گیری، برخی از محققین در انجام شده است (Wang and Hu, 1982; Wright, 1983)

* Wersuhn and Dathe, 1998

برنجهای در دنیای سالم‌های گیاهی در دنیای تولید آن به بی‌میلیون مکانیک و سطح زیر کشت در سال‌های اخیر افزایش یافته است و سطح زیر کشت سبز زمین در ایران در سال‌های اخیر افزایش یافته است.

* (Roka et al., 1978) و (Wiersema, 1985) و (Macdonald, 1983)

در سطح زیر کشت سبز زمین در سال‌های اخیر افزایش یافته است.

* (Saad et al., 1986)

پانزده و زامورا (1990)

1- Murashige and Skoog
2- Benzyl-Amino Purine
3- Gibberelic Acid
4- Naphthalene Acetic Acid
5- Furfuryl Amino Purine
6- Indole Butyric Acid
7- Butyric Acid

برای کشت دارای بیورس و بیورس می‌باشد و به ندرت میزان در سطح کشت مزون‌های عاری از ویروس
 واکنش چهار رقم نجفی سیب زمینی

واکنش چهار رقم نجفی سیب زمینی (Brown et al., 1988) محیط برای کشت میسیست، محیط حاواری
میلی کرم در لیتر AA به علاوه
میلی کرم در لیتر GA3 و
میلی کرم در لیتر KIN در لیتر
استفاده نشان داد که بهترین رشد (Merja and Stasa, 1997) میسیست در محیط حاوی NAA و IAA بود. KIN
پژوهش‌های نشان داد که بهترین محیط انتقال
بند میوز همکاران است.

GA3، KIN، IBA و IAA

کودون و همکاران (1980) حق و همکاران (1996) و سارکر و
نشان دادند که

مردم شرایط مختلف و کار با ابزار
استفاده باعث شدند، و با استفاده از لوب به لوله های
ازمایشگاهی و یا بادیک در محیط
BA و در محیط KIN و
یا در چهار غلفت
GA3
میلی کرم در لیتر Mixture در قالب طرح
کاملاً تصادفی با دو تکرار بررسی
پس از کشت
لوسه آزمایشی به اتفاق رشد با دما
درجه گراد و درجه نوعی سیستم و روش‌شناختی
(زا گیاههای حاصل از کشت میسیست دارد

مدرس شیضحون و چیا نیاح

دانند که رقم آکم را کمتر و رقم مارفونا

به تعداد می‌توان در هر گونه را در یک ارقام مورد
بررسی کند. با توجه به اهمیت بذرت بسیار

دار از انواعی که به تغییره به اتمکه برنامه‌های

ازبند بذر مسیست از طریق زرد ازدا و توی
برای کاهش آن قفل و به واردات بذرت در کشور
در حال اجرا می‌باشد، به منظور تحقیق
واکنش چهار رقم سبزی به نجفی می‌توان

ویکشن کتیبه های رشد در کشت میسیست

و تولید غده های چهار رقم زراعت

مواد و روش

به منظور بررسی

برای کشت مرطب و تولید

۱- Indole ۳- Acetic Acid
2- Laminar Flow
ترحیم کاملاً تصادفی تجزیه و بحث

نتایج و بحث

تجزیه و ارائه داده‌های مربوط به ارتفاع در مرحله کشت میریستم نشان داد که تیمار‌های مختلف هورمون‌های دی‌اکتیو در معنای داری (0.01≤p<0.05) بی‌روی ارتفاع داشتند (جدول ۱).

جدول ۱- تجزیه و ارائه‌ای برای طول ساقه ارقام سبب زمینی در مرحله کشت میریستم.

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>درجه آزادی</th>
<th>MS</th>
<th>F</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>بورن</td>
<td>۲۳</td>
<td>۱۶۱۷۵۸</td>
<td>۳۸۵۶</td>
</tr>
<tr>
<td>Error</td>
<td>۲۱۶</td>
<td>۴۱۹۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>آگریا</td>
<td>۲۳</td>
<td>۲۶۲۳۶۵</td>
<td>۱۱۹۷۹</td>
</tr>
<tr>
<td>Error</td>
<td>۲۱۶</td>
<td>۲۱۹۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>مرفونا</td>
<td>۲۳</td>
<td>۲۵۰۷۳۸</td>
<td>۷۷۴۸</td>
</tr>
<tr>
<td>Error</td>
<td>۲۱۶</td>
<td>۳۲۳۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>سننت</td>
<td>۲۳</td>
<td>۴۳۴۸۶۷</td>
<td>۹۸۲۰</td>
</tr>
<tr>
<td>Error</td>
<td>۲۱۶</td>
<td>۴۴۲۸</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Significant at the 1% probability level.

** معنی دار در سطح 1%
Table 2. Means comparison of stem length of commercial potato cultivars in different hormonal treatments in meristem culture stage.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Burren (mm)</th>
<th>Agria (mm)</th>
<th>Marfona (mm)</th>
<th>Sante (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS0</td>
<td>3.20 fg</td>
<td>5.80 ij</td>
<td>3.40 lmnno</td>
<td>3.70 j</td>
</tr>
<tr>
<td>0.5 KIN</td>
<td>1.80 g</td>
<td>2.00 lm</td>
<td>5.60 jk</td>
<td>3.00 j</td>
</tr>
<tr>
<td>1 KIN</td>
<td>1.80 g</td>
<td>3.50 kl</td>
<td>2.70 no</td>
<td>2.00 j</td>
</tr>
<tr>
<td>0.5 BA</td>
<td>2.00 g</td>
<td>1.90 lm</td>
<td>3.10 mno</td>
<td>2.00 j</td>
</tr>
<tr>
<td>0.5 BA + 0.5 KIN</td>
<td>3.30 fg</td>
<td>2.70 lm</td>
<td>1.50 o</td>
<td>3.20 j</td>
</tr>
<tr>
<td>0.5 BA + 1 KIN</td>
<td>1.80 g</td>
<td>2.00 lm</td>
<td>5.10 jk</td>
<td>2.30 j</td>
</tr>
<tr>
<td>1 BA</td>
<td>1.30 g</td>
<td>1.90 lm</td>
<td>2.40 no</td>
<td>2.40 j</td>
</tr>
<tr>
<td>1 BA + 0.5 KIN</td>
<td>2.10 g</td>
<td>1.50 m</td>
<td>1.80 o</td>
<td>2.90 j</td>
</tr>
<tr>
<td>1 BA + 1 KIN</td>
<td>1.90 g</td>
<td>2.60 lm</td>
<td>3.00 mno</td>
<td>2.40 j</td>
</tr>
<tr>
<td>2 GA3</td>
<td>14.80 a</td>
<td>7.50 fghi</td>
<td>6.10 jk</td>
<td>17.10 bcd</td>
</tr>
<tr>
<td>2 GA3 + 0.5 BA</td>
<td>11.40 b</td>
<td>7.80 fghi</td>
<td>10.00 fg</td>
<td>15.90 cde</td>
</tr>
<tr>
<td>2 GA3 + 1 KIN</td>
<td>10.30 bc</td>
<td>5.70 ij</td>
<td>10.20 ef</td>
<td>11.40 gh</td>
</tr>
<tr>
<td>2.5 GA3</td>
<td>9.40 bcd</td>
<td>22.80 a</td>
<td>13.50 bcd</td>
<td>14.30 ef</td>
</tr>
<tr>
<td>2.5 GA3 + 0.5 BA</td>
<td>8.10 cde</td>
<td>8.20 efg</td>
<td>11.40 def</td>
<td>14.10 ef</td>
</tr>
<tr>
<td>2.5 GA3 + 1 BA</td>
<td>7.20 de</td>
<td>3.40 klm</td>
<td>9.10 fgh</td>
<td>7.70 j</td>
</tr>
<tr>
<td>3 GA3</td>
<td>11.00 b</td>
<td>15.60 b</td>
<td>12.40 cde</td>
<td>15.10 de</td>
</tr>
<tr>
<td>3 GA3 + 0.5 BA</td>
<td>6.70 e</td>
<td>8.90 def</td>
<td>7.90 ghi</td>
<td>14.60 def</td>
</tr>
<tr>
<td>3 GA3 + 1 BA</td>
<td>3.40 fg</td>
<td>6.10 hj</td>
<td>15.60 b</td>
<td>4.30 j</td>
</tr>
<tr>
<td>2 GA3 + 0.5 KIN</td>
<td>10.70 bc</td>
<td>9.20 def</td>
<td>11.30 def</td>
<td>19.60 ab</td>
</tr>
<tr>
<td>2 GA3 + 1 KIN</td>
<td>3.40 fg</td>
<td>5.00 jk</td>
<td>7.20 hj</td>
<td>18.30 bc</td>
</tr>
<tr>
<td>2.5 GA3 + 0.5 KIN</td>
<td>7.10 de</td>
<td>10.30 d</td>
<td>10.50 ef</td>
<td>13.60 efg</td>
</tr>
<tr>
<td>2.5 GA3 + 1 KIN</td>
<td>10.10 bc</td>
<td>10.00 de</td>
<td>13.80 bc</td>
<td>10.40 h</td>
</tr>
<tr>
<td>3 GA3 + 0.5 KIN</td>
<td>9.60 bcd</td>
<td>13.80 c</td>
<td>20.40 a</td>
<td>21.30 a</td>
</tr>
<tr>
<td>3 GA3 + 1 KIN</td>
<td>5.80 ef</td>
<td>6.90 ghi</td>
<td>4.20 klm</td>
<td>12.10 fgh</td>
</tr>
</tbody>
</table>
دلیل این ممکن است تفاوت در ارقام و غلظت های هورمونی مختلف مورد بررسی در گروه‌های خیلی پایین تری قرار گرفته که در مقایسه میانگین در بود، که در مقایسه میانگ

Fig. 2. Stem length of potato cultivars in meristem culture stage.

شکل 1- طول ساقه در ارتفاع سبز موردنبرس در مرحله کشت میلی‌متر

جدول 1- نشان داد که اثر رقم، تیمار و اثر متقابل رقم و تیمار بر طول ساقه معنی‌دار بود، این بدين معيين است که طول ساقه، تعداد نک تکه و تعداد ريه تحت نابيگر رقم، محیط کشت (تیمار) و اثر متقابل رقم و محیط کشت (تیمار) فارق کردن (جدول 1).

در رقم بورون با بررسی میانگین صفات طول ساقه،
Table 3. Analysis of variance of the stem length and number of single node and root in potato cultivars in semi-solid media containing different hormonal concentrations and combinations.

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>Stem length</th>
<th>Number of single node</th>
<th>Number of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>MS</td>
<td>F</td>
</tr>
<tr>
<td>Treatments (T)</td>
<td>3</td>
<td>4363.506</td>
<td>46.51</td>
</tr>
<tr>
<td>Cultivar (C)</td>
<td>3</td>
<td>2786.489</td>
<td>29.70</td>
</tr>
<tr>
<td>Ti × Cr</td>
<td>9</td>
<td>683.711</td>
<td>7.29</td>
</tr>
<tr>
<td>Error</td>
<td>144</td>
<td>93.813</td>
<td></td>
</tr>
</tbody>
</table>

** Significant at the 1% probability level.
Table 4. Mean comparison for stem length and number of nodes and roots in commercial potato cultivars in different hormonal treatments in semi-solid medium.

<table>
<thead>
<tr>
<th>Number of treatment</th>
<th>Treatment</th>
<th>Stem length (mm)</th>
<th>Single node number</th>
<th>Roots number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Burren</td>
<td>Agria</td>
<td>Marfona</td>
</tr>
<tr>
<td>1</td>
<td>MS0</td>
<td>50 a.38</td>
<td>50 b.42</td>
<td>50 b.42</td>
</tr>
<tr>
<td>2</td>
<td>0.5 BA + 0.5 IBA</td>
<td>50 b.36</td>
<td>50 b.36</td>
<td>00 b.38</td>
</tr>
<tr>
<td>3</td>
<td>0.5 IBA + 1.5 GA3</td>
<td>50 a.46</td>
<td>80 ab.51</td>
<td>20 a.70</td>
</tr>
<tr>
<td>4</td>
<td>1.5 IBA + 0.5 BA + 2 GA3</td>
<td>00 a.41</td>
<td>70 ab.3</td>
<td>00 a.41</td>
</tr>
</tbody>
</table>

Means, in each column, followed by at least one letter in common are not significantly different at the 1% probability level using Duncan’s Multiple Range Test.

Fig. 3. Virus free primary callus of Agria cultivar at subculture stage
شکل ۴- مراحل انتهایی رشد گیاهچه عاری از ویروس رقم سانته در محیط انتقال مجدد

Fig. 4. Final growth stage of Sante virus free plantlet in subculture medium.

در این مرحله گیاهچه‌ها تولید کالوس کردن و سپس باز شدن، وجود نظور کننده‌های رشد اکسین و BA و تکامل تکامل کالوس و IBA (Nagib et al., 2003) متفاوت می‌باشد. در عین حال با توانایی کودونی و همکاران (Goodwin et al., 1980) و سارک و مصطفی همکاران (1996), حضور IBA و BA به عنوان یکی از بخش‌های مکانیسم رشد شکل‌گیری و تکامل تکامل کالوس و IBA می‌باشد. در این مطالعه، نتایج نشان داد که در محیط انتقال مجدد، گیاهچه‌ها به‌منظور تکرک گیاهچه‌های حاصل از کشت نسبت مناسب تیست در حالت کاهش گیاهچه‌های تولید کالوس در این مرحله داشت (جدول ۴).
از جهت افزایش و کاهش اقدامات بهبود در ارتباط با biological engineering، ممکن است بررسی های بیشتری انجام شود.

دیگر بخش‌ها:

- مینی‌تیوبر‌های بدست آمده از رقم سانته
- تعداد مینی‌تیوبر در هر بوته در ارقام مورد بررسی

صفحه قبلی:

- نتایج تحقیقی از دست داده شده
- نتایج تحقیقی از دست داده شده

plementary محتویات:

- بررسی‌های بیشتری انجام شود.
- اجرای پروژه سپاسگزاری می‌شود.
References

FAO. 2007. WWW.FAO.ORG.

Response of four commercial potato cultivars to different combinations of plant growth regulators in meristem culture and production of virus free plantlets

Roodbar Shojaei, T.¹, N. A. Sepahvand², M. Omidi³, A. Mohammadi⁴ and H. R. Abdi⁵

ABSTRACT

Large amount of potato seed in the world is produced by in vitro virus free mini tubers. Therefore, evaluation of commercial varieties for production of virus free potato minituber is critical. In this study the effects of different hormones BA and KIN at three levels 0, 0.5 and 1 mg litre⁻¹ and GA3 at four levels 0, 2, 2.5 and 3 mg litre⁻¹ either alone or in combinations were evaluated in meristem culture of four potato cultivars; Agria, Marfona, Sante and Burren. Plantlets were sub-cultured into the semi-solid media including four hormones combinations of MS0 medium, MS medium containing 0.5 mg litre⁻¹ BA + 0.5 mg litre⁻¹ IBA, 0.5 mg litre⁻¹ IBA + 1.5 mg litre⁻¹ GA3 and MS medium containing 0.5 mg litre⁻¹ BA + 1.5 mg litre⁻¹ IBA + 2 mg litre⁻¹ GA3 to achieve the best medium for sub-culture. Then ELISA test was conducted and virus free plantlets were selected and transferred to the greenhouse. After 90 days, number of minitubers for each cultivar were counted and recorded. The best medium for primary establishment of meristem for Burren was MS medium containing 2 mg litre⁻¹ GA3, for Agria was MS medium containing 2.5 mg litre⁻¹, for Marfona and Sante the best medium was MS containing 0.5 mg litre⁻¹ KIN + 3 mg litre⁻¹ GA3. The best media for sub-culture of virus free plantlets for meristem culture for Burren, Agria and Marfona was semi-solid MS medium containing 1.5 mg litre⁻¹ IBA + 0.5 mg litre⁻¹ BA + 2 mg litre⁻¹ GA3 and for Sante was 0.5 mg litre⁻¹ IBA + 1.5 mg litre⁻¹ GA3. Marfona had the greatest and Agria the least number of minituber.

Keywords: Potato, Hormone, Meristem culture, Virus free plantlet, Sub-culture medium, Minituber.

Received: January 2008
1- M.Sc. Student, Islamic Azad University, Karaj Branch, Karaj, Iran (Corresponding author).
2- Assistant Prof., Seed and Plant Improvement Institute, Karaj, Iran.
3- Associate Prof., The University of Tehran, Karaj, Iran.
4- Assistant Prof., Islamic Azad University, Karaj Branch, Karaj, Iran.
5- Faculty Member, Seed and Plant Improvement Institute, Karaj, Iran.