Evaluation of tolerance to terminal drought stress in rice (Oryza sativa L.) genotypes

Chikede

1. Introduction
2. Materials and Methods
3. Results
4. Discussion

References

Non-stress1- Stress Susceptibility Index
5- Mean Productivity2- Tolerance Index
6- Geometric Mean Productivity

Kahai et al (2003). A study of stress in maize plants. Non-stress and stress susceptibility index and its relationship with tolerance index in Brassica napus L. (Richards, 1996). (Fischer and Maurer, 1978) showed that non-stress and stress susceptibility index are influenced by different environmental factors. (O'Toole and Chang, 1979) reported that the stress susceptibility index is positively correlated with the stress resistance index in plants.

Non-stress and stress susceptibility index are calculated using the following equations:

\[ 	ext{SSI}_{\text{Nonstress}} = \frac{Y}{Y'} \]  
\[ 	ext{SSI}_{\text{Stress}} = \frac{Y}{Y'} \]  

Where:
- \( Y \) is the mean productivity in the non-stress condition,
- \( Y' \) is the mean productivity in the stress condition,
- \( SSI \) is the stress susceptibility index.

The tolerance index (TOL) is defined as the ratio of the mean productivity in the non-stress condition to the mean productivity in the stress condition:

\[ 	ext{TOL} = \frac{Y}{Y'} \]  

The geometric mean productivity (GMP) is calculated using the following equation:

\[ 	ext{GMP} = \left( \frac{Y}{Y'} \right)^{1/n} \]  

Where:
- \( n \) is the number of observations.

The relationship between stress susceptibility index and tolerance index can be expressed as:

\[ 	ext{SSI} = \text{TOL} \]  

Fischer and Maurer (1978) showed that the stress susceptibility index is positively correlated with the tolerance index in plants. (Fischer and Maurer, 1978) reported that the stress susceptibility index is positively correlated with the tolerance index in plants.

Non-stress and stress susceptibility index are calculated using the following equations:

\[ 	ext{SSI}_{\text{Nonstress}} = \frac{Y}{Y'} \]  
\[ 	ext{SSI}_{\text{Stress}} = \frac{Y}{Y'} \]  

Where:
- \( Y \) is the mean productivity in the non-stress condition,
- \( Y' \) is the mean productivity in the stress condition,
- \( SSI \) is the stress susceptibility index.

The tolerance index (TOL) is defined as the ratio of the mean productivity in the non-stress condition to the mean productivity in the stress condition:

\[ 	ext{TOL} = \frac{Y}{Y'} \]  

The geometric mean productivity (GMP) is calculated using the following equation:

\[ 	ext{GMP} = \left( \frac{Y}{Y'} \right)^{1/n} \]  

Where:
- \( n \) is the number of observations.

The relationship between stress susceptibility index and tolerance index can be expressed as:

\[ 	ext{SSI} = \text{TOL} \]  

Fischer and Maurer (1978) showed that the stress susceptibility index is positively correlated with the tolerance index in plants. (Fischer and Maurer, 1978) reported that the stress susceptibility index is positively correlated with the tolerance index in plants.
"رزیبی نمود زنوبی برنج". (Fernandez, 1992).

\[
\text{1- Stress Tolerance Index} \quad \text{2- Harmonic mean}
\]

۱۳۷
<table>
<thead>
<tr>
<th>No.</th>
<th>Genotype</th>
<th>Maturity</th>
<th>Plant height</th>
<th>Zootip</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abjibouj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sadri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DomSiah-Solimandar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mohammad-M-Chaparsar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ghashange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mehr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Amol 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tarom-Mantaghe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gharib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Hasansaraei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Hasansaraei-Atashgah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Domsephid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Safari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Anbarbbo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sepidrood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Sangio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Champaboodar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Binam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Bejar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Dorfak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DomSorkh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DomSiah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Khazar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Domzard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Alikazemi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
برزخ کلیه بوطنهای هر کرت محاسبه کردم و شاخص برداشت از تیمعمیم عملکرد شلوک به عملکرد بیولوژیک دست اماده‌گیری انجام گرفته چنانچه زیر استاندارد استفاده موسسه نجاح‌شده (IRRI). برای اندازه‌گیری صفات مورد مطالعه، از هر واحد از ایانگی بیوهای بطور تصادفی انتخاب شد و اندازه‌گیری و تحلیل آماری قرار گرفت. برای ارزیابی وزن حساسی (GMP)، وزن حساسی (MP)، وزن حساسی (STI) و وزن حساسی (SSSI) مورد استفاده قرار گرفتند. (Fischer and Maurer, 1978; Rosielle and Hamblin, 1981; Fernandez, 1992) روزهای از کاشت بذر در خزانه تا مرحله رشدگی کامل دانه و برداشت محصول بوطنهی هر کرت وزن هزار دانه (وزن هزار دانه) به کرت محاسبه شده. عملکرد شلوک (عملکرد شلوک کل (RWC)، به کرت محاسبه و بر حسب تن در هکتار بیان گردید، عملکرد بیولوژیک (عملکرد شلوک و ساقه و

\[ \text{RWC}\% = \frac{(\text{وزن خشک گندم اساسی})}{(\text{وزن خشک گندم اساسی})} \times 100 \]

پس از اندازه‌گیری وزن خشک گندم اساسی و وزن خشک گندم اساسی داده‌های اندازه‌گیری و وزن خشک گندم اساسی در آخر در تحلیل و تجزیه (SPSS و SAS) انجام شد. همچنین ضرایب همبستگی بین شاخص‌ها و عملکرد تحت حر در شرایط محاسبه کرده. برای وضعیت و تحلیل داده‌ها و اندازه‌گیری از نرم‌افزار (SPSS و SAS) استفاده گردید.

1- RELATIVE WATER CONTENT
2- INTERNATIONAL RICE RESEARCH INSTITUTE
3- PADDY YIELD
همچنین اکثر مقاوت نسبت به شرایط محیطی مرتبط دانست. با توجه به عملکرد و شاخص برداشت بالای رقم نعمت تحت شرایط رشدی و زمان گلدهی مناسب، این رقم جهت فراز از خشکی و حفظ رشد در خلال دوره خشکی رقمی مناسب برای کاشت در شرایط خشکی محض می‌گردد. لازم به ذکر است که تحت شرایت تنش، عملکرد زننده‌گی صاف کسمی بوده و توسط تعداد زیراژ این کنترل می‌شود. همچنین ورشت پذیری این صفات به دلیل عملکرد بالا اثر متقابل زننده‌گی کم‌تر (جدول ۴) پایین بوده و پایداری انتخاب بر اساس صرفه عملکرد دانه در جهت بهبود تحمیل به خشکی چندان موثر نخواهد بود و باید اجزای عملکرد و سایر صفات عملکرد دانه را مسئول قرار داد. صفات مورفولوژیک و فنولوژیک به سادگی و با دقت زیاد قابل اندوزی گاز بوده و ویژگی انتخابی بهبود داشته و انتخاب بر اساس صفات ممکن است راه مطمئن و سریع برای غیر مجاز گیاهی و بهبود عملکرد باشد (Richards, 1996). در حقیقت انتخاب زننده‌گی متحمل به خشکی علامه بر اینکه باید با

فوکایا و کوییر (1995) نمودند که با تلقیه‌های مثبت پذیرش به‌کار گرفتند تشاد و توان‌زدن زننده‌گی متحمل به خشکی را از روزی عملکرد دانه انتخاب صفات، به‌طوری که نمودرد به خشکی عملکرد دانه بالاتری را افزایش داده‌که تاکنون نمودند که دلیل اصلی کسری نرسختگی در اصلاح برای مقاومت به خشکی در برنج، عدم شناسایی دقیقی ریختگی مثبت شده‌اند. زننده‌گی مثبت کاشت برنج است و این سوال اب و بروک خود را در حد بالا (۳-۴) کننده بهتر رشد کرده و در تابعی عملکرد دانه‌ای (Fukai and Cooper, 1995) فوکایا (1999), اکثر اظهار داشت که یکانداری و
Table 2. Analysis of variance for agromorphological traits in rice genotypes under non-stressed and stressed conditions

<table>
<thead>
<tr>
<th>Genotype</th>
<th>S.O.V</th>
<th>Error</th>
<th>Replication</th>
<th>Genotype</th>
<th>Error</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td></td>
<td></td>
<td>df</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.V.%</td>
<td></td>
<td></td>
<td>C.V.%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH</td>
<td></td>
<td></td>
<td>PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Error</td>
<td></td>
<td></td>
<td>Error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-stressed

<table>
<thead>
<tr>
<th>Trait</th>
<th>Source of Variation</th>
<th>Mean Square</th>
<th>df</th>
<th>Mean</th>
<th>Error</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stressed

<table>
<thead>
<tr>
<th>Trait</th>
<th>Source of Variation</th>
<th>Mean Square</th>
<th>df</th>
<th>Mean</th>
<th>Error</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Means and the reduction percentage of them in rice genotypes under non-stressed and stressed conditions

<table>
<thead>
<tr>
<th>Trait</th>
<th>Stressed condition</th>
<th>Non-stressed condition</th>
<th>Reduction (%)</th>
<th>t-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>119.56</td>
<td>126.18</td>
<td>5.24</td>
<td>1.20ns</td>
</tr>
<tr>
<td>PL</td>
<td>27.94</td>
<td>31.44</td>
<td>11.13</td>
<td>5.00**</td>
</tr>
<tr>
<td>FLL</td>
<td>36.58</td>
<td>42.89</td>
<td>14.71</td>
<td>5.09**</td>
</tr>
<tr>
<td>FLW</td>
<td>0.40</td>
<td>1.55</td>
<td>9.67</td>
<td>4.78**</td>
</tr>
<tr>
<td>GNP</td>
<td>115.41</td>
<td>157.27</td>
<td>26.61</td>
<td>10.76**</td>
</tr>
<tr>
<td>SNP</td>
<td>145.39</td>
<td>169.44</td>
<td>14.19</td>
<td>5.79**</td>
</tr>
<tr>
<td>PNP</td>
<td>16.97</td>
<td>25.48</td>
<td>33.39</td>
<td>6.23**</td>
</tr>
<tr>
<td>PL</td>
<td>9.53</td>
<td>9.81</td>
<td>2.85</td>
<td>1.77**</td>
</tr>
<tr>
<td>PW</td>
<td>2.48</td>
<td>2.58</td>
<td>3.87</td>
<td>1.72**</td>
</tr>
<tr>
<td>DF</td>
<td>88.82</td>
<td>91.35</td>
<td>2.76</td>
<td>1.50**</td>
</tr>
<tr>
<td>DM</td>
<td>110.13</td>
<td>113.59</td>
<td>3.04</td>
<td>2.19</td>
</tr>
<tr>
<td>TGW</td>
<td>22.97</td>
<td>25.32</td>
<td>9.28</td>
<td>5.75**</td>
</tr>
<tr>
<td>PY</td>
<td>2.92</td>
<td>4.87</td>
<td>40.04</td>
<td>8.96**</td>
</tr>
<tr>
<td>BY</td>
<td>6.74</td>
<td>9.86</td>
<td>31.64</td>
<td>7.79**</td>
</tr>
<tr>
<td>HI</td>
<td>0.43</td>
<td>0.49</td>
<td>12.24</td>
<td>5.82**</td>
</tr>
<tr>
<td>RWC</td>
<td>0.55</td>
<td>0.67</td>
<td>17.91</td>
<td>7.06**</td>
</tr>
</tbody>
</table>

ns, * and **: Non-significant, significant at 5% and 1% probability levels, respectively.

Table 4. Combined analysis of variance for different traits in rice genotypes under non-stressed and stressed conditions

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>df</th>
<th>PH</th>
<th>PL</th>
<th>FLL</th>
<th>GNP</th>
<th>SNP</th>
<th>PNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment (E)</td>
<td>1</td>
<td>3222.92**</td>
<td>904.01**</td>
<td>2933.61**</td>
<td>128799.87**</td>
<td>42526.53**</td>
<td>5326.11**</td>
</tr>
<tr>
<td>Rep (Environment)</td>
<td>4</td>
<td>1.80**</td>
<td>1.46**</td>
<td>2.04**</td>
<td>4.02**</td>
<td>7.62**</td>
<td>3.09**</td>
</tr>
<tr>
<td>Genotype</td>
<td>48</td>
<td>4451.49**</td>
<td>63.32**</td>
<td>184.31**</td>
<td>1806.36**</td>
<td>2033.21**</td>
<td>216.85**</td>
</tr>
<tr>
<td>Environment × Genotype</td>
<td>48</td>
<td>61.45**</td>
<td>8.59**</td>
<td>31.51**</td>
<td>410.30**</td>
<td>429.66**</td>
<td>54.08**</td>
</tr>
<tr>
<td>Error</td>
<td>192</td>
<td>1.77</td>
<td>0.36</td>
<td>0.55</td>
<td>1.37</td>
<td>1.66</td>
<td>0.65</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>8.1</td>
<td>7.02</td>
<td>8.1</td>
<td>8.6</td>
<td>8.1</td>
<td>8.32</td>
</tr>
</tbody>
</table>

Table 4: Continued

<table>
<thead>
<tr>
<th>S.O.V</th>
<th>df</th>
<th>PW</th>
<th>DF</th>
<th>DM</th>
<th>PY</th>
<th>HI</th>
<th>RWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment (E)</td>
<td>1</td>
<td>0.79**</td>
<td>470.69**</td>
<td>881.22**</td>
<td>278.79**</td>
<td>0.25**</td>
<td>0.96**</td>
</tr>
<tr>
<td>Rep (Environment)</td>
<td>4</td>
<td>0.0001**</td>
<td>9.27**</td>
<td>2.82**</td>
<td>0.006**</td>
<td>0.0001**</td>
<td>0.0001**</td>
</tr>
<tr>
<td>Genotype</td>
<td>48</td>
<td>0.48**</td>
<td>461.13**</td>
<td>367.52**</td>
<td>5.73**</td>
<td>0.015**</td>
<td>0.03**</td>
</tr>
<tr>
<td>Environment × Genotype</td>
<td>48</td>
<td>0.04**</td>
<td>14.17**</td>
<td>19.65**</td>
<td>1.36**</td>
<td>0.001**</td>
<td>0.008**</td>
</tr>
<tr>
<td>Error</td>
<td>192</td>
<td>0.01</td>
<td>0.81</td>
<td>0.57</td>
<td>0.003</td>
<td>0.00009</td>
<td>0.00005</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>4.00</td>
<td>10.00</td>
<td>6.70</td>
<td>14.10</td>
<td>12.20</td>
<td>5.11</td>
</tr>
</tbody>
</table>

** and ***: Non-significant, significant at 5% and 1% probability level, respectively.


References:

Pirdashti et al., 2004 (1)
Jongdee et al., 1997 (2)
Zheng et al., 2003 (3)
Matsushima, 1966 (4)
Zheng et al., 2003 (5)

Downloaded from agrobreedjournal.ir at 16:22 +0330 on Saturday February 6th 2021
Table 5. Mean comparison of paddy yield and drought tolerance indices in rice genotypes under stress and non-stress (using Tukey method at the 1% probability level) conditions

<table>
<thead>
<tr>
<th>Genotype</th>
<th>STI</th>
<th>SSI</th>
<th>TOL</th>
<th>GM</th>
<th>HM</th>
<th>TO</th>
<th>SI</th>
<th>STI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abjibouy</td>
<td>0.34</td>
<td>1.17</td>
<td>1.84</td>
<td>2.72</td>
<td>2.85</td>
<td>3.92</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>Sadri</td>
<td>0.50</td>
<td>0.95</td>
<td>1.67</td>
<td>3.36</td>
<td>3.45</td>
<td>3.55</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Domshiah-Solimandarab</td>
<td>0.47</td>
<td>0.69</td>
<td>1.09</td>
<td>3.31</td>
<td>3.35</td>
<td>3.40</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>Mohammadi-Chaparsar</td>
<td>0.70</td>
<td>0.89</td>
<td>1.82</td>
<td>3.99</td>
<td>4.08</td>
<td>4.18</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>Ghashange</td>
<td>0.45</td>
<td>1.12</td>
<td>1.98</td>
<td>3.14</td>
<td>3.28</td>
<td>3.43</td>
<td>4.42</td>
<td></td>
</tr>
<tr>
<td>Mehr</td>
<td>0.61</td>
<td>1.17</td>
<td>2.46</td>
<td>3.64</td>
<td>3.82</td>
<td>4.01</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>Amol 3</td>
<td>0.81</td>
<td>1.24</td>
<td>3.05</td>
<td>4.14</td>
<td>4.38</td>
<td>4.64</td>
<td>6.17</td>
<td></td>
</tr>
<tr>
<td>Tarom-Mantaghe</td>
<td>0.39</td>
<td>0.83</td>
<td>1.25</td>
<td>2.99</td>
<td>3.05</td>
<td>3.12</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>Gharib</td>
<td>0.38</td>
<td>0.89</td>
<td>1.34</td>
<td>2.92</td>
<td>3.07</td>
<td>3.07</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>Hasansaraei</td>
<td>0.32</td>
<td>0.74</td>
<td>0.99</td>
<td>2.74</td>
<td>2.73</td>
<td>2.83</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Domsephid</td>
<td>0.51</td>
<td>1.12</td>
<td>2.11</td>
<td>3.33</td>
<td>3.48</td>
<td>3.64</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td>Sangio</td>
<td>1.01</td>
<td>0.72</td>
<td>1.66</td>
<td>4.82</td>
<td>4.89</td>
<td>4.96</td>
<td>5.79</td>
<td></td>
</tr>
<tr>
<td>Champaboodar</td>
<td>0.71</td>
<td>0.95</td>
<td>2.01</td>
<td>3.99</td>
<td>4.11</td>
<td>4.23</td>
<td>5.23</td>
<td></td>
</tr>
<tr>
<td>Binam</td>
<td>0.31</td>
<td>0.79</td>
<td>1.04</td>
<td>2.55</td>
<td>2.74</td>
<td>2.83</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Bejar</td>
<td>0.71</td>
<td>0.77</td>
<td>1.53</td>
<td>4.04</td>
<td>4.11</td>
<td>4.18</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>Dorfak</td>
<td>0.36</td>
<td>1.21</td>
<td>1.83</td>
<td>2.59</td>
<td>2.74</td>
<td>2.83</td>
<td>3.80</td>
<td></td>
</tr>
<tr>
<td>Domshiah</td>
<td>0.37</td>
<td>1.10</td>
<td>1.77</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Khazar</td>
<td>0.37</td>
<td>1.10</td>
<td>1.77</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Domzard</td>
<td>0.33</td>
<td>1.07</td>
<td>1.71</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Alizademi</td>
<td>0.33</td>
<td>1.07</td>
<td>1.71</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Kadous</td>
<td>0.33</td>
<td>1.07</td>
<td>1.71</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Shahpasand</td>
<td>0.33</td>
<td>1.07</td>
<td>1.71</td>
<td>2.86</td>
<td>2.98</td>
<td>3.11</td>
<td>3.99</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Continued

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Paddy yield</th>
<th>Stress tolerance index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STI</td>
<td>GMP</td>
</tr>
<tr>
<td>Deylamani</td>
<td>0.42</td>
<td>3.48</td>
</tr>
<tr>
<td>Tarommahali</td>
<td>0.37</td>
<td>1.44</td>
</tr>
<tr>
<td>Deilamani</td>
<td>0.93</td>
<td>1.30</td>
</tr>
<tr>
<td>Neda</td>
<td>0.70</td>
<td>0.56</td>
</tr>
<tr>
<td>Sange</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gill 1</td>
<td>0.83</td>
<td>1.10</td>
</tr>
<tr>
<td>Gill 3</td>
<td>0.33</td>
<td>0.93</td>
</tr>
<tr>
<td>Nemat</td>
<td>0.40</td>
<td>1.08</td>
</tr>
<tr>
<td>Gharib-Siahreiani</td>
<td>0.59</td>
<td>1.12</td>
</tr>
<tr>
<td>Ahlami-Tarom</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>Hashemi</td>
<td>0.44</td>
<td>0.97</td>
</tr>
<tr>
<td>Line 6</td>
<td>0.42</td>
<td>1.34</td>
</tr>
<tr>
<td>IR24</td>
<td>0.91</td>
<td>0.30</td>
</tr>
<tr>
<td>IR60</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>IR30</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>IR50</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>New Bonnet</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>Vandana</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>IR64</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>Araguia</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>Diwani</td>
<td>0.57</td>
<td>1.18</td>
</tr>
<tr>
<td>IR28</td>
<td>0.57</td>
<td>1.18</td>
</tr>
</tbody>
</table>

HSD (1%) = 0.18, 0.18, 0.13, 0.14, 0.16, 0.26, 0.11, 0.05

Yp = Yield potential
Ys = Yield in stressed condition
MP = Mean Productivity
GMP = Geometrical Mean Productivity
HM = Harmonic Mean
Tol = Tolerance Index
STI = Stress Tolerance Index
SSI = Stress Susceptibility Index
HSD = Tukey’s honestly significant differences

(Fischer and Fukaei, 2003)

(Review of Fisher, 1978)

(Pirdashti et al., 2004)

(Pirdashti et al., 2004)

(Pirdashti et al., 2004)
همچنین تن‌ش خشکی باعث تغییر ۱۹/۷۱ RWC (شاد کاهش) ۳۸۳۱ (Yadav and Bhushan, 2001) بود. تولید این نسبت اب برق در اثر تن‌ش خشکی توسط پیداشتن همبستگی و بیاداو و بی‌هوشان (Yadav and Bhushan, 2001) مقدار نسبی اب برق به طور مستقیم با نور بهایه و پتانسیل آی‌هام ارتباط دارد. از طرف دیگر تغییر در ارتباط با توزع و تغییر سلولی است و بدت تریپ ارتباط نت‌زیکی بین میزان نسبی آب برق و عملکرد

جهت انجام تجزیه واریانس مرکب، آزمون یک‌واحدی واریانس (آزمون بارالت) انجام شد. به دلیل غیرگوناگری بودن واریانس صفات عرضی برق برخور، طول شاترک، وزن هزار دانه و عملکرد پلورولیزیک، این صفات وارد تجزیه واریانس مرکب نشدند. در جدول ۱۰، تغییرات اب تجزیه واریانس مرکب (اریا په) هر دو تغییرات اب تجزیه واریانس مرکب (اریا په) هر دو

در سطح احتمال ۰/۰۵، حاصل نشان داد که اثر تغییرات اب تجزیه واریانس مرکب (اریا په) هر دو

تجزیه اثر دو محیط (اریا په) در سطح احتمال ۰/۰۵ مشاهده شد. به‌له تبعیت فوق دور از انتظار نیز نبود، چرا که ارقام مورد مطالعه در ازامیش دارای بی‌مقدار و شامل ارقام مدلی، اصلاح شده داخلی و خارجی و حتی ارقام اصلی په‌بوده و طیف تفاوت بین ۰/۰۵ رقیم نیز منعدم

در پاداشی، اما هدف ازامیش بررسی واکنش نت‌زیکی در محیط و شناسایی رقیم با رقیم‌های متحمل به خشکش په‌بوده بر اساس تجزیه واریانس اثر

مقدار نت‌زیکی در محیط صورت گرفت و ملا ۰/۰۵

ردانه و اثر ان در فرنگی‌داخلمی کیان شاخ‌
برداشت کاهش می‌باید و دلیل دیگر کاهش شاخ‌
برداشت، کاهش قدرت انتقال مواد پوسته از ساقه به

درصدی میزان نسبی برق اب در اثر تن‌ش خشکی توسط
پیداشتن و همبستگی و بیاداو و بی‌هوشان
٧٢٣
ﭘﺎﻳﻴﻦ ﻣﻘﺎﻳﺴﻪ میانگین حسابی (MP)، میانگین هندسی (GMP)، میانگین STI (Y). 

Fernandez, 1992، برای محاسبه، در داده‌های دیگری از MP و GMP و STI، شاخص ﻣﺤﻘﻘﻴﻨﻲ، نظیر خلیلی (۹۷۳۱) عیل ۷۷۳۱ MP و STI یافتند. 

Quesenberry, 1982/۲۶.
Table 6. Correlation coefficients between drought tolerance and susceptibility indices and paddy yield for rice genotypes under non-stressed (N) and stressed (S) conditions

<table>
<thead>
<tr>
<th>Drought tolerance indices</th>
<th>Y_S</th>
<th>Y_P</th>
<th>MP</th>
<th>GMP</th>
<th>HM</th>
<th>TOL</th>
<th>SSI</th>
<th>STI</th>
<th>RWC_S</th>
<th>RWC_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_S</td>
<td>1</td>
<td>0.62**</td>
<td>0.87**</td>
<td>0.93**</td>
<td>0.96**</td>
<td>-0.22**</td>
<td>-0.61**</td>
<td>0.94**</td>
<td>0.88**</td>
<td>0.62**</td>
</tr>
<tr>
<td>Y_P</td>
<td>1</td>
<td>0.92**</td>
<td>0.86**</td>
<td>0.79**</td>
<td>0.62**</td>
<td>0.20**</td>
<td>0.81**</td>
<td>0.56**</td>
<td>0.91**</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>1</td>
<td>0.99**</td>
<td>0.96**</td>
<td>0.27**</td>
<td>-0.18**</td>
<td>0.96**</td>
<td>0.77**</td>
<td></td>
<td>0.87**</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>1</td>
<td>0.99**</td>
<td>0.14**</td>
<td>0.30**</td>
<td>0.98**</td>
<td>0.83**</td>
<td></td>
<td>0.81**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td>1</td>
<td>0.02**</td>
<td>-0.41**</td>
<td>0.98**</td>
<td>0.87**</td>
<td></td>
<td></td>
<td></td>
<td>0.75**</td>
<td></td>
</tr>
<tr>
<td>TOL</td>
<td>1</td>
<td>0.87**</td>
<td>0.06**</td>
<td>-0.18**</td>
<td>0.52**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSI</td>
<td>1</td>
<td>-0.35**</td>
<td>-0.57**</td>
<td>0.14**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td>1</td>
<td>0.79**</td>
<td></td>
<td></td>
<td>0.78**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWC_S</td>
<td>1</td>
<td>0.56**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% probability levels, respectively.

Y_P = Yield potential
Y_S = Yield in stressed condition
MP = Mean Productivity
GMP = Geometrical Mean Productivity
HM = Harmonic Mean
Tol = Tolerance Index
STI = Stress Tolerance Index
SSI = Stress Susceptibility Index

GMP, MP, and STI represent drought-tolerant genotypes.

*ns: Non-significant
References


Institute. Los Banos, Philippines.
Evaluation of tolerance to terminal drought stress in rice (Oryza sativa L.)
genotypes

Safaei Chaeikar, S1, B. Rabiei2, H. Samizadeh3 and M. Esfahani4

ABSTRACT


In order to evaluate rice genotypes for tolerance to terminal drought stress and to identifying tolerant and sensitive genotypes to this stress, 49 rice genotypes were studied in two environments (stressed and non-stressed conditions) using randomized complete blocks design with three replications in Research Field, Faculty of Agricultural Sciences, Guilan University in 2006 cropping season. The studied traits were included: plant height, panicle number plant, grain number panicle, spikelet number panicle, paddy yield, harvest index, relative water content, etc. Analysis of variance showed that there were significant effect (p < 0.01) of genotypes on all traits in two environments, which implies genetic variation among genotypes. Mean comparison of genotypes showed that in two environments, the highest paddy yield belonged to Nemat cultivar (7.31 and 7.07 t/ha respectively), whereas the least paddy yield in non-stressed environment belonged to Dom-sefid's cultivar (2.74 t/ha) and in drought stressed environment to Diwani's cultivar (1.46 t/ha). Considering yield components (panicle number/ plant, spikelet number/ panicle, grain number/panicle) in Nemat contributed to its higher paddy yield in stressed and non-stressed conditions. Percentage of reduction in traits means by drought stress showed that the paddy yield (40%) was the most affected trait. According to drought resistant indices, the highest mean productivity (MP), geometric mean productivity (GMP), harmonic mean (HM), stress tolerance index (STI), relative water content (RWC) and the least stress susceptibility index (SSI) and tolerance index (TOL) belonged to Nemat's cultivar. Relationship between drought resistant indices and paddy yield in stressed and non-stressed environments showed that MP, GMP, HM, STI and RWC indices had positive and significant correlation with yield in stress and non-stress environments and would be suitable indices in both environments for selection of drought tolerant cultivars. It is concluded that STI, is the most suitable index among drought indices.

Keywords: Rice, Terminal drought stress, Drought tolerance indices, Paddy yield, Panicle.

Received: August, 2007
1. Former M.Sc. Student, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
2. Assistant Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran (Corresponding author).
3 and 4. Assistant Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.