Effect of mycorrhiza, vermicompost and phosphate biofertilizer application on flowering, biological yield and root colonization in fennel (

Foeniculum vulgare Mill.)

چکیده

درزی، م. ت.، قلاوند، ف. رجایی، ل. ن. بررسی اثر کاربرد میکوریزا و ورم کمپوست و کود فسفات زایمانده و کمپوست و کود فسفات اثر

به منظور بررسی اثر کودهای زیستی بر گل‌دهی، عکس‌گیری بیولوژیک و درصد همیزشی ریشه با فرآیند میکوریزاسیون در گیاه دارویی

Foeniculum vulgare Mill. را انجام دادند. کود فسفات زیستی و کلیپ و کمپوست و ورم کمپوست و کود فسفات اثر

به یژه در ناحیهی با همکاری به‌طور فاکتوریل سه میزان از مواد خوراکی قابل اطمینان و

به‌طور کلی پذیرایی با همکاری به‌طور طراحی طرح پایه

فدراسیون تیم‌های تیم‌های با همکاری به‌طور مورد نیاز بررسی شد.

: ۰۲/۹/۶۸

۱-)(

۲-

۳-
در ضمن عبور از دستکا کواریوسی این جانوران وجود
وکشیده و کمپوست دارای ایجاد یزیده، قدرت
جذب و نکننی در اندازه غذا با، البته و زهکش
و ظریف باید نکننی در اب میانند و استفاده
از ان در کواریوسی پایدار، ماراک فرآیند جمعیت و
فعالیت میکورایوکمیزم های میفی خاخ (نظر فاریه های
میکورایوکمیزم های حل کننده فسفات) در
جهد فراهم ان با نماز غذا و مورد نزی کیهان مانند
فروشن، فسفر و پاسیس محلول عموم ناورد و
سبب بهبود رشد و عملکرد گیاهان زراعتی شود.
می‌توان به تاکیدی که
کواریوزی کمیزم از افراد [کوک 1993] که می‌توان
دارد، گیاهان داروی که محسوب می‌شوند و به
بیاورد. رشد که در جدید شرایط حداکثر رشد و
عملکرد از آنها حاصل کرده (2002) از
فیومیکا اونسوکو (Foeniculum vulgare Mill.)
زرات در در حال و جهان برخودار بوده و از اساس
حاصل از دانه آن در صنای مخلوط دارویی غذا
(Marotti et al., 1993; Khan et al., 1992; Bajaj, 1989; Omidiabaghi,
وسی در مناطق خراسان، تهران، کرمان، همدان،
کردستان، کرمان و تبریز دارد و تا ارتقاء
کردن زرات از سطح ذه به طور خودرو رشد می‌کند
(Rashed Mohassel و نیزمی، 1998).
کشت زرات از در آم حداز [کاز 1993] هکتاار ما به
استان های عمده توسعه کرده آن محصول شامل همدان,
خراسان، کهکشان و ارومیه اردبیل، لرستان، تهران، کرمان و
کلستان مستند (2005) در ارتباط با نقش کرویه زرات
بر روی [کاز 1993] و
کرویه و میکاران (2004) در
شناش دادند که
در مورد مصرف نهایی [کاز 1993] در
اواض 2 گزارنده نمی‌باشد، متناب اب، نت آت
محصولات کواریوزی و کاهش میزان خاکه کرده است (2002b).
کواریوزی
2009
در مصرف نهایی [کاز 1993] در
حل مطابع جهت غلبه بر [کاز 1993] مشکلات بیش می‌باشد.
کرویه زرات [کاز 1993] حاوی مواد کودهای اول
کرویه زرات [کاز 1993] در جهت نگاه
کاشت جهت کاهش گزینه [کاز 1993]
و [کاز 1993] نیاز می‌باشد
که به منظور بهبود حاصلخیز خاک و عرض
کواریوزی [کاز 1993] که در
کرویه زرات [کاز 1993] نوبه با قرار های [کاز 1993]
Vesicular Arbuscular Mycorrhiza

یی حلب کرویه و وکمپوست ایجاد می‌کند. قرار
های میکورایوکمیزم ایجاد رابطه همیشه‌ای با ریشه
اغلب گیاهان زراعتی [کاز 1993] و از طریق افزایش جذب
عناصر غذای مثل فسفر و روخت کم مصرف،
افزایش گذب اب که با تاثیر منفی منشای
اواض و افزایش مقاومت در برابر عوامل بیماری، سپر بهبود
در رشد و عملکرد گیاهان می‌زیند در بیست شیمی
کواریوزی پایدار می‌باشد (2002a).
کرویه زرات [کاز 1993] حاصل کرویه فسفات [کاز 1993]
کم میکورایوکمیزم های حل کننده فسفات [کاز 1993] که عمداد
اذب اواض حلالیت فسفات [کاز 1993] کم
محول نظر سنگ فسفات [کاز 1993] همچنین بسیاری از
امنی با تولید ازین [کاز 1993] فسفات، سپر از شدن فسفر از
ورم کمپوست [کاز 1993] تولید شده به
کروم های خاکی است که درتیپی تغیر و تبدیل و هضم
پلاسمای آل (کود دامشی [کاز 1993] و غیره)
جدول ۱. برخی خواص فیزیکی و شیمیایی خاک محل ازمایش

<table>
<thead>
<tr>
<th>عناصر</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>K</th>
<th>P</th>
<th>N</th>
<th>O.C</th>
<th>EC</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار (mg/kg)</td>
<td>2.60</td>
<td>0.68</td>
<td>9.9</td>
<td>7.4</td>
<td>-</td>
<td>-</td>
<td>726</td>
<td>16</td>
<td>8.19</td>
<td>0.70</td>
<td>0.92</td>
<td>7.3</td>
</tr>
</tbody>
</table>

* مقدار مصرفی عناصر غذازی از همه عناصر غذازی موجود در خاک به طور یکنواخت و به ترتیب حسین کرده اند.
ورمی کمپوست یا که رفته در ازمایش اورژن با استفاده از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.

جدول 2- برخی خصوصیات شیمیایی ورمی کمپوست مورد استفاده

<table>
<thead>
<tr>
<th>حیوان</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Fe</th>
<th>Mg</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Fe</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد کلوی در کیلوگرم</td>
<td>26</td>
<td>124</td>
<td>638</td>
<td>17000</td>
<td>14000</td>
<td>46000</td>
<td>4400</td>
<td>4600</td>
<td>8200</td>
<td></td>
</tr>
</tbody>
</table>

می‌باشد لذا فقط در سال اول ازمایش کشت کرده‌ایم. همچنین بر اساس نتایج تجربه‌ها و ورمی کمپوست‌های که در محله ساخته می‌شود به‌صورت کمیا، میزان C1 کلوی کرت کرده در زمین‌های ازمایش و سایر محیط‌های دیگر در جدول‌های ساخته می‌شود. برای مثال در طبق آزمایش (جدول 2) با استفاده از از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.

احتمال تهیه از اسپند ماه و با ساختند شرایط اغلب ویا نمایندگی کرده‌ایم. به منظور اجرای ازمایش، اندازه هر کرتو از ایجاد X متر با [داده‌گیری کاشت لحاظ کرده‌ایم. فاصله بین کرتو کمتر و بین تکرارها دو متر در نظر گرفته شدند. کاشت رابطه ویا آزمایش یا نگهداری کرتو از اسپند ماه و با ساختند شرایط‌های مناسب قدیمی به کمک انجام‌های ازمایشی در ساعت‌های مجزا در کار تعریف نشده و در جدول 2 به‌صورت نمایش گذشته‌ها در سرای شرط اول و بالا گرفته و دانش‌مندان کاشت باید در تکرار کرتو. در این شرایط صفات تعیین چند در بیشترین العاملکه، Pseudomonas striata و E. foetida به همراه سایر محیط‌های دیگر در جدول‌های ساخته می‌شود. برای مثال در طبق آزمایش (جدول 2) با استفاده از از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.

احتمال تهیه از اسپند ماه و با ساختند شرایط اغلب ویا نمایندگی کرده‌ایم. به منظور اجرای ازمایش، اندازه هر کرتو از ایجاد X متر با [داده‌گیری کاشت لحاظ کرده‌ایم. فاصله بین کرتو کمتر و بین تکرارها دو متر در نظر گرفته شدند. کاشت رابطه ویا آزمایش یا نگهداری کرتو از اسپند ماه و با ساختند شرایط‌های مناسب قدیمی به کمک انجام‌های ازمایشی در ساعت‌های مجزا به‌صورت نمایش گذشته‌ها در سرای شرط اول و بالا گرفته و دانش‌مندان کاشت باید در تکرار کرتو. در این شرایط صفات تعیین چند در بیشترین العاملکه، Pseudomonas striata و E. foetida به همراه سایر محیط‌های دیگر در جدول‌های ساخته می‌شود. برای مثال در طبق آزمایش (جدول 2) با استفاده از از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.

احتمال تهیه از اسپند ماه و با ساختند شرایط اغلب ویا نمایندگی کرده‌ایم. به منظور اجرای ازمایش، اندازه هر کرتو از ایجاد X متر با [داده‌گیری کاشت لحاظ کرده‌ایم. فاصله بین کرتو کمتر و بین تکرارها دو متر در نظر گرفته شدند. کاشت رابطه ویا آزمایش یا نگهداری کرتو از اسپند ماه و با ساختند شرایط‌های مناسب قدیمی به کمک انجام‌های ازمایشی در ساعت‌های مجزا به‌صورت نمایش گذشته‌ها در سرای شرط اول و بالا گرفته و دانش‌مندان کاشت باید در تکرار کرتو. در این شرایط صفات تعیین چند در بیشترین العاملکه، Pseudomonas striata و E. foetida به همراه سایر محیط‌های دیگر در جدول‌های ساخته می‌شود. برای مثال در طبق آزمایش (جدول 2) با استفاده از از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.

احتمال تهیه از اسپند ماه و با ساختند شرایط اغلب ویا نمایندگی کرده‌ایم. به منظور اجرای ازمایش، اندازه هر کرتو از ایجاد X متر با [داده‌گیری کاشت لحاظ کرده‌ایم. فاصله بین کرتو کمتر و بین تکرارها دو متر در نظر گرفته شدند. کاشت رابطه ویا آزمایش یا نگهداری کرتو از اسپند ماه و با ساختند شرایط‌های مناسب قدیمی به کمک انجام‌های ازمایشی در ساعت‌های مجزا به‌صورت نمایش گذشته‌ها در سرای شرط اول و بالا گرفته و دانش‌مندان کاشت باید در تکرار کرتو. در این شرایط صفات تعیین چند در بیشترین العاملکه، Pseudomonas striata و E. foetida به همراه سایر محیط‌های دیگر در جدول‌های ساخته می‌شود. برای مثال در طبق آزمایش (جدول 2) با استفاده از از Pseudomonas striata و E. foetida و کود دامی و کونهای گرم خاکی بنام (Rock Phosphate) به همراه سه محصول از کاهن دارویی مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان فراهم گردید.
Table 3. Summary of combined analysis of variance of effect of biofertilizers on some characteristics in fennel

<table>
<thead>
<tr>
<th>S. O. V.</th>
<th>df</th>
<th>Umbrella no./plant</th>
<th>Biological Yield</th>
<th>Root colonization percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year (Y)</td>
<td>1</td>
<td>9671.905</td>
<td>163389436.2</td>
<td>232.731</td>
</tr>
<tr>
<td>Replication (Y)</td>
<td>4</td>
<td>1.158</td>
<td>81964.3</td>
<td>10.140</td>
</tr>
<tr>
<td>Mycorrhizal Inoculation (M)</td>
<td>1</td>
<td>1198.667</td>
<td>20428827.4</td>
<td>18084.426</td>
</tr>
<tr>
<td>M × Y</td>
<td>1</td>
<td>114.577</td>
<td>2175806.8</td>
<td>105.495</td>
</tr>
<tr>
<td>Phosphate Biofertilizer (P)</td>
<td>2</td>
<td>28.534</td>
<td>714533.0</td>
<td>247.980</td>
</tr>
<tr>
<td>P × Y</td>
<td>2</td>
<td>8.479</td>
<td>205309.9</td>
<td>4.154</td>
</tr>
<tr>
<td>M × P</td>
<td>2</td>
<td>2.277</td>
<td>7585.3</td>
<td>43.518</td>
</tr>
<tr>
<td>M × P × Y</td>
<td>2</td>
<td>1.239</td>
<td>17362.6</td>
<td>0.234</td>
</tr>
<tr>
<td>Vermicompost (V)</td>
<td>2</td>
<td>538.717</td>
<td>82267566.9</td>
<td>713.565</td>
</tr>
<tr>
<td>V × Y</td>
<td>2</td>
<td>537.723</td>
<td>14590730.3</td>
<td>5.953</td>
</tr>
<tr>
<td>M × V</td>
<td>2</td>
<td>5.639</td>
<td>484828.1</td>
<td>18.142</td>
</tr>
<tr>
<td>M × V × Y</td>
<td>2</td>
<td>0.796</td>
<td>360237.1</td>
<td>0.279</td>
</tr>
<tr>
<td>Phosphate Biofertilizer (P)</td>
<td>4</td>
<td>2.419</td>
<td>43320.3</td>
<td>48.852</td>
</tr>
<tr>
<td>P × V</td>
<td>4</td>
<td>0.744</td>
<td>33565.1</td>
<td>0.394</td>
</tr>
<tr>
<td>P × V × Y</td>
<td>4</td>
<td>0.350</td>
<td>16111.0</td>
<td>29.098</td>
</tr>
<tr>
<td>M × P × V</td>
<td>4</td>
<td>0.429</td>
<td>26424.4</td>
<td>0.671</td>
</tr>
<tr>
<td>M × P × V × Y</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>68</td>
<td>6.093</td>
<td>67206.4</td>
<td>6.109</td>
</tr>
</tbody>
</table>

* and **: Significant at 5 and 1% levels of probability, respectively.

ns: Non-significant.
Table 4. Means for umbrella no./plant in different levels of biofertilizers in 2005 and 2006 cropping seasons

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2005</th>
<th>2006</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1= non-inoculated</td>
<td>26.43</td>
<td>43.30</td>
<td>34.9</td>
</tr>
<tr>
<td>M2= inoculated</td>
<td>31.03</td>
<td>52.02</td>
<td>41.5</td>
</tr>
<tr>
<td>Phosphate Biofertilizer (kg/ha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1= 0</td>
<td>28.31</td>
<td>46.14</td>
<td>37.2</td>
</tr>
<tr>
<td>P2= 30</td>
<td>28.73</td>
<td>48.03</td>
<td>38.4</td>
</tr>
<tr>
<td>P3= 60</td>
<td>29.15</td>
<td>48.81</td>
<td>39.0</td>
</tr>
<tr>
<td>Vermicompost (ton/ha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1= 0</td>
<td>20.45</td>
<td>32.18</td>
<td>26.3</td>
</tr>
<tr>
<td>V2= 5</td>
<td>28.54</td>
<td>46.48</td>
<td>37.5</td>
</tr>
<tr>
<td>V3= 10</td>
<td>37.21</td>
<td>64.31</td>
<td>50.7</td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.

Table 5. Summary of combined analysis of variance for biofertilizers effect on some characteristics in fennel

<table>
<thead>
<tr>
<th>S. O. V.</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year (Y)</td>
<td>1</td>
<td>17161.067</td>
<td>223.832</td>
<td></td>
</tr>
<tr>
<td>Replication (Y)</td>
<td>4</td>
<td>3.126</td>
<td>8.183</td>
<td></td>
</tr>
<tr>
<td>Treatment (T)</td>
<td>18</td>
<td>10528845.1</td>
<td>1380.815</td>
<td></td>
</tr>
<tr>
<td>T × Y</td>
<td>18</td>
<td>841925.8</td>
<td>7.786</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>72</td>
<td>63755.7</td>
<td>5.972</td>
<td></td>
</tr>
</tbody>
</table>

* and **: Significant at 5 and 1% levels of probability, respectively.

ns: Non-significant.
Table 6. Means of umbrella no./plant as affected by biofertilizers in 2005 and 2006 cropping seasons

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Umbrella no./plant</th>
<th>2005 Mean</th>
<th>2006 Mean</th>
<th>% Change to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1P1V1</td>
<td>17.5 j</td>
<td>26.3 h</td>
<td>21.9 f</td>
<td>-47.7</td>
</tr>
<tr>
<td>M1P1V2</td>
<td>26.2 gh</td>
<td>41.4 ef</td>
<td>33.8 d</td>
<td>-19.3</td>
</tr>
<tr>
<td>M1P1V3</td>
<td>34.0 bed</td>
<td>56.6 bc</td>
<td>45.2 b</td>
<td>-8.8</td>
</tr>
<tr>
<td>M1P2V1</td>
<td>18.7 j</td>
<td>28.3 h</td>
<td>23.5 f</td>
<td>-43.9</td>
</tr>
<tr>
<td>M1P2V2</td>
<td>26.2 gh</td>
<td>42.7 e</td>
<td>34.4 d</td>
<td>-17.9</td>
</tr>
<tr>
<td>M1P2V3</td>
<td>35.2 b</td>
<td>60.6 b</td>
<td>47.9 b</td>
<td>+4.4</td>
</tr>
<tr>
<td>M1P3V1</td>
<td>18.3 j</td>
<td>29.3 h</td>
<td>23.8 f</td>
<td>-43.2</td>
</tr>
<tr>
<td>M1P3V2</td>
<td>27.1 fg</td>
<td>43.7 e</td>
<td>35.4 d</td>
<td>-15.5</td>
</tr>
<tr>
<td>M1P3V3</td>
<td>34.7 bc</td>
<td>61.1 b</td>
<td>47.9 b</td>
<td>+4.3</td>
</tr>
<tr>
<td>M2P1V1</td>
<td>21.9 i</td>
<td>35.2 k</td>
<td>28.6 e</td>
<td>-31.7</td>
</tr>
<tr>
<td>M2P1V2</td>
<td>30.7 de</td>
<td>49.7 d</td>
<td>40.4 c</td>
<td>-3.5</td>
</tr>
<tr>
<td>M2P1V3</td>
<td>39.2 a</td>
<td>67.9 a</td>
<td>53.5 a</td>
<td>-7.6</td>
</tr>
<tr>
<td>M2P2V1</td>
<td>22.7 i</td>
<td>36.5 f</td>
<td>29.6 e</td>
<td>-29.3</td>
</tr>
<tr>
<td>M2P2V2</td>
<td>29.8 ef</td>
<td>50.4 d</td>
<td>40.1 c</td>
<td>-4.2</td>
</tr>
<tr>
<td>M2P2V3</td>
<td>39.9 a</td>
<td>69.6 a</td>
<td>54.7 a</td>
<td>-6.05</td>
</tr>
<tr>
<td>M2P3V1</td>
<td>23.6 hi</td>
<td>37.4 f</td>
<td>30.5 c</td>
<td>-27.2</td>
</tr>
<tr>
<td>M2P3V2</td>
<td>31.0 de</td>
<td>51.0 d</td>
<td>41.0 c</td>
<td>-2.1</td>
</tr>
<tr>
<td>M2P3V3</td>
<td>40.2 a</td>
<td>70.3 a</td>
<td>55.2 a</td>
<td>+1.7</td>
</tr>
<tr>
<td>Control (NPK: 90, 60 and 90 Kg/ha)</td>
<td>31.6 cde</td>
<td>52.2 cd</td>
<td>41.9 c</td>
<td>-</td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.

Downloaded from agrobreedjournal.ir at 16:38 +0330 on Wednesday December 5th 2018
Table 4. Means for biological yield in different levels of biofertilizers and their interactions in 2005 and 2006 cropping seasons.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Biological Yield (Kg/ha)</th>
<th>Mean</th>
<th>M × V</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 = non-inoculated</td>
<td>3392 b</td>
<td>5568 b</td>
<td>4480 b</td>
</tr>
<tr>
<td>M2 = inoculated</td>
<td>3978 a</td>
<td>6722 a</td>
<td>5350 a</td>
</tr>
<tr>
<td>Phosphatic Biofertilizer (Kg/ha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 = 0 kg/ha</td>
<td>3610 b</td>
<td>5906 b</td>
<td>4757 b</td>
</tr>
<tr>
<td>P2 = 30 kg/ha</td>
<td>3712 a</td>
<td>6203 a</td>
<td>4957 a</td>
</tr>
<tr>
<td>P3 = 60 kg/ha</td>
<td>3734 a</td>
<td>6326 a</td>
<td>5029 a</td>
</tr>
<tr>
<td>Vermicompost (ton/ha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 = 0 ton/ha</td>
<td>2794 c</td>
<td>3928 c</td>
<td>3361 c</td>
</tr>
<tr>
<td>V2 = 5 ton/ha</td>
<td>3718 b</td>
<td>6289 b</td>
<td>5003 b</td>
</tr>
<tr>
<td>V3 = 10 ton/ha</td>
<td>4544 a</td>
<td>8218 a</td>
<td>6380 a</td>
</tr>
<tr>
<td>M1V1</td>
<td>2435 f</td>
<td>3334 f</td>
<td>2884 f</td>
</tr>
<tr>
<td>M1V2</td>
<td>3470 d</td>
<td>5929 d</td>
<td>4699 d</td>
</tr>
<tr>
<td>M1V3</td>
<td>4271 b</td>
<td>7441 b</td>
<td>5856 b</td>
</tr>
<tr>
<td>M2V1</td>
<td>3153 e</td>
<td>4522 e</td>
<td>3837 e</td>
</tr>
<tr>
<td>M2V2</td>
<td>3965 c</td>
<td>6650 c</td>
<td>5307 c</td>
</tr>
<tr>
<td>M2V3</td>
<td>4816 a</td>
<td>8994 a</td>
<td>6904 a</td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.
Table 6. Means of biological yield as affected by biofertilizers in 2005 and 2006 cropping seasons

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Biological Yield (Kg/ha)</th>
<th>2005</th>
<th>2006</th>
<th>Mean</th>
<th>%Change to control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1P1V1</td>
<td></td>
<td>2414</td>
<td>3204</td>
<td>2808</td>
<td>-48.9</td>
</tr>
<tr>
<td>M1P1V2</td>
<td></td>
<td>3476</td>
<td>5628</td>
<td>4552</td>
<td>-17.1</td>
</tr>
<tr>
<td>M1P1V3</td>
<td></td>
<td>4177</td>
<td>7123</td>
<td>5649</td>
<td>+2.8</td>
</tr>
<tr>
<td>M1P2V1</td>
<td></td>
<td>2404</td>
<td>3380</td>
<td>2892</td>
<td>-47.4</td>
</tr>
<tr>
<td>M1P2V2</td>
<td></td>
<td>3515</td>
<td>5986</td>
<td>4750</td>
<td>-13.5</td>
</tr>
<tr>
<td>M1P2V3</td>
<td></td>
<td>4272</td>
<td>7489</td>
<td>5880</td>
<td>+7.0</td>
</tr>
<tr>
<td>M1P3V1</td>
<td></td>
<td>2486</td>
<td>3420</td>
<td>2952</td>
<td>-46.3</td>
</tr>
<tr>
<td>M1P3V2</td>
<td></td>
<td>3420</td>
<td>6173</td>
<td>4796</td>
<td>-12.7</td>
</tr>
<tr>
<td>M1P3V3</td>
<td></td>
<td>4366</td>
<td>7712</td>
<td>6039</td>
<td>+9.9</td>
</tr>
<tr>
<td>M2P1V1</td>
<td></td>
<td>3011</td>
<td>4345</td>
<td>3678</td>
<td>-33.0</td>
</tr>
<tr>
<td>M2P1V2</td>
<td></td>
<td>3858</td>
<td>6397</td>
<td>5127</td>
<td>-6.7</td>
</tr>
<tr>
<td>M2P1V3</td>
<td></td>
<td>4724</td>
<td>8738</td>
<td>6731</td>
<td>+22.5</td>
</tr>
<tr>
<td>M2P2V1</td>
<td></td>
<td>3342</td>
<td>4584</td>
<td>3963</td>
<td>-27.9</td>
</tr>
<tr>
<td>M2P2V2</td>
<td></td>
<td>4046</td>
<td>6699</td>
<td>5372</td>
<td>-2.2</td>
</tr>
<tr>
<td>M2P2V3</td>
<td></td>
<td>4691</td>
<td>9083</td>
<td>6886</td>
<td>+25.3</td>
</tr>
<tr>
<td>M2P3V1</td>
<td></td>
<td>3106</td>
<td>4638</td>
<td>3872</td>
<td>-29.5</td>
</tr>
<tr>
<td>M2P3V2</td>
<td></td>
<td>3991</td>
<td>6854</td>
<td>5422</td>
<td>-1.3</td>
</tr>
<tr>
<td>M2P3V3</td>
<td></td>
<td>5033</td>
<td>9161</td>
<td>7097</td>
<td>+29.2</td>
</tr>
<tr>
<td>Control (NPK: 90, 60 and 90 Kg/ha)</td>
<td></td>
<td>4002</td>
<td>6986</td>
<td>5494</td>
<td></td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.
Results of the investigation of the isolates were compared. The bacterial isolates of G. macrocarpum, G. fasciculatum and B. polymyxa were used to perform test with lentil, pea, and soybean seeds. Singh and Kapoor (1999) and Singh and Kapoor (1998) found that the presence of Glomus feminosum, a mycorrhizal fungus, increased plant growth. Similarly, Gupta et al. (2002) reported that mycorrhizal inoculation of Glomus macrocarpum increased plant growth.

Kale et al. (1987) and Shivaputra et al. (2004) observed that the presence of Bacillus polymyxa increased plant growth. Singh and Kopoor (1998) and Singh and Kopoor (1999) found that the presence of Bacillus circulans increased plant growth.

Gupta et al. (2002) reported that mycorrhizal inoculation of Glomus macrocarpum increased plant growth. Singh and Kopoor (1998) and Singh and Kopoor (1999) found that the presence of Bacillus circulans increased plant growth.
Table 7. Means for root colonization percent in different levels of biofertilizers in 2005 and 2006 cropping seasons.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Root colonization (%)</th>
<th>2005</th>
<th>2006</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycorrhizal Inoculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1= non-inoculated</td>
<td></td>
<td>26.77 b</td>
<td>27.73 b</td>
<td>27.25 b</td>
</tr>
<tr>
<td>M2= inoculated</td>
<td></td>
<td>50.68 a</td>
<td>55.59 a</td>
<td>53.13 a</td>
</tr>
<tr>
<td>Phosphatic Biofertilizer (Kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1= 0 kg/ha</td>
<td></td>
<td>36.97 b</td>
<td>39.14 c</td>
<td>38.06 c</td>
</tr>
<tr>
<td>P2= 30 kg/ha</td>
<td></td>
<td>37.81 b</td>
<td>40.99 b</td>
<td>39.40 b</td>
</tr>
<tr>
<td>P3= 60 kg/ha</td>
<td></td>
<td>41.40 a</td>
<td>44.85 a</td>
<td>43.12 a</td>
</tr>
<tr>
<td>Vermicompost (ton/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1= 0 ton/ha</td>
<td></td>
<td>34.08 b</td>
<td>63.13 c</td>
<td>35.10 c</td>
</tr>
<tr>
<td>V2= 5 ton/ha</td>
<td></td>
<td>41.54 a</td>
<td>45.20 a</td>
<td>43.37 a</td>
</tr>
<tr>
<td>V3= 10 ton/ha</td>
<td></td>
<td>40.56 a</td>
<td>43.65 b</td>
<td>42.11 b</td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.
ملاحظه 1: در بخش‌های پروفسور‌ها، نویسندگان و همکاران (Sainz et al., 1994) ذکر نیست اما نوشته‌ای که در مقاله‌های دیگر ذکر شده است، مثلاً در کلکاتا (Sainz et al., 1994) نویسندگان همکارانشان در جواب به دست امضاء است، در آن خصوص، سایه‌ای و همکاران (1998) در [پیام‌های من تک‌نفره‌ای] کلکاتا، ای‌که روزی‌ها نشان داده. مشاهده‌ای که در مورد عجیب و غریب انجام داده می‌باشد، نویسندگان در [پیام‌های من تک‌نفره‌ای] گروه‌ها، که با مصرف [پیام‌های من تک‌نفره‌ای] دارد و می‌تواند آمده‌ای از تجربه‌های دیگر کرده‌اند.

ملاحظه 2: در بخش‌های پروفسور‌ها، نویسندگان و همکاران (Ratti et al., 2000) ذکر نیست اما نوشته‌ای که در مقاله‌های دیگر ذکر شده است، مثلاً در کلکاتا (Sainz et al., 1994) نویسندگان همکارانشان در جواب به دست امضاء است، در آن خصوص، سایه‌ای و همکاران (1998) در [پیام‌های من تک‌نفره‌ای] کلکاتا، ای‌که روزی‌ها نشان داده. مشاهده‌ای که در مورد عجیب و غریب انجام داده می‌باشد، نویسندگان در [پیام‌های من تک‌نفره‌ای] گروه‌ها، که با مصرف [پیام‌های من تک‌نفره‌ای] دارد و می‌تواند آمده‌ای از تجربه‌های دیگر کرده‌اند.
Table 8. Means of root colonization percent as affected by biofertilizers in 2005 and 2006 cropping seasons

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2005</th>
<th>2006</th>
<th>Mean</th>
<th>% Change to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1P1V1</td>
<td>17.62</td>
<td>17.13</td>
<td>17.45</td>
<td>+41.5</td>
</tr>
<tr>
<td>M1P1V2</td>
<td>27.47</td>
<td>27.43</td>
<td>27.95</td>
<td>+126.7</td>
</tr>
<tr>
<td>M1P1V3</td>
<td>27.61</td>
<td>28.87</td>
<td>27.97</td>
<td>+125.0</td>
</tr>
<tr>
<td>M1P2V1</td>
<td>22.16</td>
<td>22.49</td>
<td>22.32</td>
<td>+81.0</td>
</tr>
<tr>
<td>M1P2V2</td>
<td>28.47</td>
<td>28.80</td>
<td>29.65</td>
<td>+140.3</td>
</tr>
<tr>
<td>M1P2V3</td>
<td>30.50</td>
<td>31.93</td>
<td>31.74</td>
<td>+153.2</td>
</tr>
<tr>
<td>M1P3V1</td>
<td>27.97</td>
<td>28.27</td>
<td>28.12</td>
<td>+128.0</td>
</tr>
<tr>
<td>M1P3V2</td>
<td>30.07</td>
<td>32.43</td>
<td>31.25</td>
<td>+153.4</td>
</tr>
<tr>
<td>M1P3V3</td>
<td>28.97</td>
<td>30.23</td>
<td>29.60</td>
<td>+140.0</td>
</tr>
<tr>
<td>M2P1V1</td>
<td>42.57</td>
<td>45.27</td>
<td>43.92</td>
<td>+256.2</td>
</tr>
<tr>
<td>M2P1V2</td>
<td>53.40</td>
<td>58.90</td>
<td>56.15</td>
<td>+355.4</td>
</tr>
<tr>
<td>M2P1V3</td>
<td>53.03</td>
<td>57.23</td>
<td>55.13</td>
<td>+347.1</td>
</tr>
<tr>
<td>M2P2V1</td>
<td>46.20</td>
<td>50.21</td>
<td>48.20</td>
<td>+290.9</td>
</tr>
<tr>
<td>M2P2V2</td>
<td>50.05</td>
<td>55.67</td>
<td>53.86</td>
<td>+328.7</td>
</tr>
<tr>
<td>M2P2V3</td>
<td>49.47</td>
<td>54.87</td>
<td>52.17</td>
<td>+323.1</td>
</tr>
<tr>
<td>M2P3V1</td>
<td>53.81</td>
<td>59.77</td>
<td>56.79</td>
<td>+360.6</td>
</tr>
<tr>
<td>Control (NPK: 90, 60 and 90 Kg/ha)</td>
<td>12.13</td>
<td>12.53</td>
<td>12.33</td>
<td>-</td>
</tr>
</tbody>
</table>

Means, in each column for each factor, followed by at least one letter in common are not significantly different at the 5% probability level, using Duncan’s Multiple Range Test.
References

Kumar, S., C. R. Rawat, S. Dhar and S. K. Rai. 2005. Dry matter accumulation, nutrient uptake and changes in soil fertility status as influenced by different organic sources of nutrients to forage sorghum (Sorghum bicolor).

Effect of mycorrhiza, vermicompost and phosphate biofertilizer application on flowering, biological yield and root colonization in fennel (Foeniculum vulgare Mill.)

Darzi, M.T.¹, A. Ghalavand² and F. Rejali³

ABSTRACT

In order to study the effect of biofertilizers on flowering, biological yield and root colonization in fennel (Foeniculum vulgare Mill.), an experiment was conducted in 2005 and 2006 growing seasons. The factors were mycorrhizal inoculation (inoculated and non-inoculated), phosphate biofertilizer (0, 30, 60 Kg/ha) and vermicompost (0, 5, 10 Ton/ha). The treatments were arranged as factorial in a randomized complete blocks design with eighteen treatments and three replications. These treatments together with a chemical fertilizer control treatment (NPK: 90, 60 and 90 Kg/ha) were also evaluated using a randomized complete blocks design with nineteen treatments and three replications. Results showed that the highest umbrella no./plant, biological yield and root colonization percent were obtained with mycorrhiza treatment. Phosphate biofertilizer also showed significant effect on these traits. The maximum umbrella no./plant and root colonization percent were related to the plots with application of 60 Kg/ha of phosphate biofertilizer. The highest biological yield were obtained with application of 30 Kg/ha phosphate biofertilizer. The maximum umbrella no./plant and biological yield were obtained from vermicompost (10 ton/ha). The highest root colonization percent were also obtained with application of five ton/ha vermicompost. There were positive and synergistic interactions between factors. For example, interactions between mycorrhizal inoculation × vermicompost on biological yield. Differences between control and biofertilizer treatments were significant, as umbrella no./plant and biological yield in treatment of inoculation with mycorrhiza, application of 60 kg/ha phosphate biofertilizer and 10 ton/ha vermicompost were higher than control. Root colonization percent in treatment of inoculation with mycorrhiza, application of 60 Kg/ha phosphate biofertilizer and five ton/ha vermicompost was also greater than control.

Key words: Fennel, Mycorrhiza, Phosphate biofertilizer, Vermicompost, Flowering, Biological yield, Root colonization.

Received: December 2007
1- Assistant professor, Islamic Azad University, Roodhen Unit, Roodhen, Iran (Corresponding author)
2- Associate professor, Faculty of Agriculture, The University of Tarbiat Modarres, Tehran, Iran
3- Assistant professor, Soil and Water Research Institute, Tehran, Iran