Assessment of osmoregulation capability in bread wheat (Triticum aestivum L.) cultivars using response of projected pollen grains to drought stress

کری مقصودی و علی اکبر مقصودی مود

چکیده

در یک آزمایش کندانسی سی و سه رقم گندم از لحاظ توالتایی تنظیم اسمری با استفاده از نسبت مساحت تصویر دانه‌های گرده در شرایط تنش خشکی و بدون تنش مقایسه شده. دانه‌های گرده بیشتری رشد یافته در شرایط بدون تنش. در محلول‌های 0.5 اصلاح میکروسکوپی دنجانی مساحت آنها را روشن آنالیز تصویر اندازه‌گیری شد. در یک آزمایش مزه‌مایی نیز عملکرد دانه این ارقام در قابل طرح گرده خرد شده (آزمایش بدون تنش و تنش خشکی در گرده‌های اصلی و ارقام گندم در گرده فرعي) با سه تکرار در مزرعه تحقیقاتی دانشگاه شهید بهنام کرمان ارائه شد. بر اساس نتایج بدست آمده نسبت مساحت دانه‌های گرده قرار گرفته در محلول بالا اصلاح میکروسکوپی درصد، در ارقام در کوبر، روشن، بکر کراس روشن زمین، بکر، آبود و امید بیشتر از وقت بدون این ارقام در کرو دارای توالتایی تنظیم اسمری قرار گرفتند. بینه ارقام دارای نسبت کمتر از وقت بدون و در گروه فاقد توالتایی تنظیم اسمری قرار گرفتند. تجزیه واریانس داده‌ها مربوط به عملکرد دانه که اثر خشکی و قرار بر عملکرد دانه و اجرای عملکرد عمدلرد بیولوژیک و شاخص برداشت معنی‌دار بود و تنش خشکی سبب کاهش عملکرد دانه و عملکرد بیولوژیک دانه ارقام دارای توالتایی تنظیم اسمری بود. نتایج به دست آمده از مقایسه ارقام از لحاظ توالتایی تنظیم اسمری با تاثیر این ارقام در شرایط تنش خشکی در مزرعه به دست آمده مستانعی معنی‌داری (***p < 0.001) داشت. بالاتر بودن عملکرد در گروه توالتایی تنظیم اسمری به زایم‌بودن بودن این ارقام تنظیم اسمری آنها نسبت داده. از این نتایج چنین نتیجه گیری می‌شد که ارقام دارای توالتایی تنظیم اسمری در مقایسه با ارقام قاری دانه اجرای عملکرد عمدلرد بیولوژیک و ارای کشت در شرایط خشکی امرجحی دارند. بنابراین این ارقام از توانایی دانه های بیMinute ارزی افزایش توالتایی تنظیم اسمری ارقام سازگار با شرایط خشکی استفاده نمود.

واژه‌های کلیدی: تنظیم اسمزی، دانه گرده، تنش خشکی، گندم نان، عملکرد دانه، اجزاء عملکرد.

تاریخ دریافت: 1398/7/1
تاریخ پذیرش: 1398/7/1

دانشجوی کارشناسی ارشد، دانشگاه شهید باهنر کرمان
استادیار، دانشگاه کشاورزی، دانشگاه شهید باهنر کرمان

میزان تغییرات در حجم نسبی یا نیروی موضع در سیال و در نتیجه تغییر در پتانسیل است. این امر می‌تواند به علت تغییرات دهیان و همجنسی پتانسیل اسمنزی یا اتصالات بالینی باشد.

طیوری که مصرف دارند ارزام‌ریستی شاریا در نظر می‌گیرند. انتقال اسمنزی تحت شرایط نشانگر که توسط روش‌های مختلف ارزی می‌باشد.

(Blum and Morgan, 1992)
مراجع

Morgan, 1999
Morgan, 1988
Morgan, 1992
Morgan and Tan, 1996
Morgan, 1991
Morgan, 1999
Marchner, 1995
Leigh, 2001

EC = 4 ds/m
PEG - 6000
KCl

۰۰۰۶ (۰۳ گریت)
۲۱ (۵ گریت)
۴۲ .

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)

در محصول تنش زا به مقدار کافی پون پناسی وجود داشته است (می‌توان از) مراحل گردش اتمسفری امسی در بوته (Morgan, 1999) استفاده کرد. (با توجه به این که در هنگام پروز تنظیم امسی، بایستی بسته اصولی مواد محلولی است که در سلول تجمع پیدا می کند (Leigh, 2001; Marchner, 1995)
Table 1. List of breed wheat cultivars used in this study.

<table>
<thead>
<tr>
<th>Cultivar (winter)</th>
<th>Cultivar (spring)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C. Roshan</td>
<td>B.C. Roshan</td>
</tr>
<tr>
<td>Khazar</td>
<td>Tous</td>
</tr>
<tr>
<td>Shiraz</td>
<td>Marvdasht</td>
</tr>
<tr>
<td>Pishatraz</td>
<td>Sissons</td>
</tr>
<tr>
<td>Gamsoor</td>
<td>Gascoine</td>
</tr>
<tr>
<td>Gaspard</td>
<td>Falat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Cultivar</th>
<th>Cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghods</td>
<td>Atrak</td>
<td>Khazar</td>
</tr>
<tr>
<td>Navid</td>
<td>Niknejad</td>
<td>Tous</td>
</tr>
<tr>
<td>Hermand</td>
<td>Kavir</td>
<td>Shahryar</td>
</tr>
<tr>
<td>Rasoul</td>
<td>Chamran</td>
<td>Shiraz</td>
</tr>
<tr>
<td>Alvand</td>
<td>Shiroudi</td>
<td>Dez</td>
</tr>
<tr>
<td>Alamoot</td>
<td>Alvand</td>
<td>Hamoon</td>
</tr>
<tr>
<td>Mahdavi</td>
<td>Sardari</td>
<td>Pishatraz</td>
</tr>
<tr>
<td>Zarrin</td>
<td>Omid</td>
<td>Pishatraz</td>
</tr>
<tr>
<td>Darab2</td>
<td>Azar2</td>
<td>Sissons</td>
</tr>
<tr>
<td>Tajan</td>
<td>Roshan</td>
<td>Gaspard</td>
</tr>
</tbody>
</table>

Source: http://www.iranwheat.ir
شکل ۱: بارندگی در ماه‌های مختلف سال در کرمان

Fig 1. Monthly mean of precipitation (mm) and temperature (°C) of Kerman over the last 50 years (http://weather.ir)

عبارت از تعداد سالنی در متراً مربع، تعداد دانه در سالنی، وزن هزار دانه، عملکرد دانه و بیولوژیک و شاخص برداشت بودن، داده‌ها با استفاده از نرم‌افزار SPSS مورد تجزیه واریانس و همبستگی قرار گرفتند.

ییج و بحث

مساحت تصویر دانه‌های کرده ژنوتیپ-های مختلف در محلول پلی اتیلن کلیکول و درصد و نسبت ها در محلول PEG ۳۰% در جدول نشان داده شده اند. همانطور که این جدول نشان می‌دهد، نسبت مساحت تصویر دانه‌های کرده در ارقام اول ژنوتیپ-های PEG ۵۰% کمتر از واحد می‌شود (PEG ۳۰%)

این تاثیر نشان می‌دهد که می‌توان کرده اول ارقام جدول ۱ نسبت مساحت تصویر دانه کرده اینها از واحد بیشتری از باشند را توانا در تنظیم امکانی و کرده دوم، که این نسبت برای اینها کمتر از واحد است را نیست مساحت تصویر دانه‌های کرده در ارقام دوم ژنوتیپ-های PEG ۵۰% کمتر از واحد و در بقیه ارقام کمتر از واحد در ژنوتیپ‌های دارای ژنوتیپ-های مختلف تنظیم امکانی به طور کامل انجام می‌شود انتظار می‌رود که دانه‌های کرده در شرایط تنظیم شکل ۱ (PEG ۵۰% و ۳۰%) دارد نسبت مساحت ۵۰% به دانه‌های کرده شاهد (PEG ۳۰% و ۵۰%) ۱۴۰۶
Table 2. Projected pollen area, grain yield and harvest index of bread wheat cultivars grown under non-stress and drought stress.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Projected pollen grain area</th>
<th>Grain yield (g/m²)</th>
<th>Harvest index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEG 30%</td>
<td>PEG 50%</td>
<td>(50:30)%</td>
</tr>
<tr>
<td>Alvand</td>
<td>1.04</td>
<td>1.74</td>
<td>1.68</td>
</tr>
<tr>
<td>Pishtaz</td>
<td>1.04</td>
<td>1.76</td>
<td>1.70</td>
</tr>
<tr>
<td>Dez</td>
<td>1.11</td>
<td>1.94</td>
<td>1.74</td>
</tr>
<tr>
<td>Kavir</td>
<td>1.06</td>
<td>1.48</td>
<td>1.39</td>
</tr>
<tr>
<td>B.C. Roshan (winter type)</td>
<td>1.27</td>
<td>1.54</td>
<td>1.21</td>
</tr>
<tr>
<td>Roshan</td>
<td>1.03</td>
<td>1.86</td>
<td>1.80</td>
</tr>
<tr>
<td>Zarrin</td>
<td>1.03</td>
<td>1.80</td>
<td>1.74</td>
</tr>
<tr>
<td>Omid</td>
<td>1.04</td>
<td>1.71</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Capable for osmoregulation

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Projected pollen grain area</th>
<th>Grain yield (g/m²)</th>
<th>Harvest index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEG 30%</td>
<td>PEG 50%</td>
<td>(50:30)%</td>
</tr>
<tr>
<td>Azar 2</td>
<td>1.04</td>
<td>1.01</td>
<td>0.98</td>
</tr>
<tr>
<td>Atrak</td>
<td>1.82</td>
<td>1.79</td>
<td>0.82</td>
</tr>
<tr>
<td>Alamot</td>
<td>1.73</td>
<td>1.61</td>
<td>0.92</td>
</tr>
<tr>
<td>B.C. Roshan (spring type)</td>
<td>1.73</td>
<td>1.58</td>
<td>0.92</td>
</tr>
<tr>
<td>Tajan</td>
<td>1.81</td>
<td>1.67</td>
<td>0.97</td>
</tr>
<tr>
<td>Chamran</td>
<td>1.62</td>
<td>1.49</td>
<td>0.92</td>
</tr>
<tr>
<td>Khazar</td>
<td>1.52</td>
<td>1.38</td>
<td>0.91</td>
</tr>
<tr>
<td>Darab 2</td>
<td>1.84</td>
<td>1.73</td>
<td>0.94</td>
</tr>
<tr>
<td>Rasoul</td>
<td>1.84</td>
<td>1.65</td>
<td>0.89</td>
</tr>
<tr>
<td>Sissoms</td>
<td>1.53</td>
<td>1.49</td>
<td>0.97</td>
</tr>
<tr>
<td>Sardari</td>
<td>1.71</td>
<td>1.54</td>
<td>0.89</td>
</tr>
<tr>
<td>Shahryar</td>
<td>1.72</td>
<td>1.55</td>
<td>0.90</td>
</tr>
<tr>
<td>Shiroudi</td>
<td>1.80</td>
<td>1.47</td>
<td>0.82</td>
</tr>
<tr>
<td>Falat</td>
<td>1.75</td>
<td>1.74</td>
<td>0.99</td>
</tr>
<tr>
<td>Marvdasht</td>
<td>1.67</td>
<td>1.38</td>
<td>0.82</td>
</tr>
<tr>
<td>Mahdavi</td>
<td>1.55</td>
<td>1.29</td>
<td>0.83</td>
</tr>
<tr>
<td>Navid</td>
<td>1.58</td>
<td>1.48</td>
<td>0.94</td>
</tr>
<tr>
<td>Niknejad</td>
<td>1.63</td>
<td>1.55</td>
<td>0.95</td>
</tr>
<tr>
<td>Hirmand</td>
<td>1.78</td>
<td>1.75</td>
<td>0.99</td>
</tr>
<tr>
<td>Tous</td>
<td>1.58</td>
<td>1.40</td>
<td>0.88</td>
</tr>
<tr>
<td>Ghods</td>
<td>1.50</td>
<td>1.41</td>
<td>0.94</td>
</tr>
<tr>
<td>Gascony</td>
<td>1.72</td>
<td>1.57</td>
<td>0.91</td>
</tr>
<tr>
<td>Hamoon</td>
<td>1.79</td>
<td>1.61</td>
<td>0.90</td>
</tr>
<tr>
<td>Gaspard</td>
<td>1.57</td>
<td>1.41</td>
<td>0.89</td>
</tr>
<tr>
<td>Shiraz</td>
<td>1.46</td>
<td>1.28</td>
<td>0.87</td>
</tr>
</tbody>
</table>
Fig 2. Responses of pollen grain of Tous as an incapable cultivar for osmoregulation under 30% (a) and 50% (b) and Zarrin as a capable cultivar under 30% (c) and 50% (d) PEG solutions (ocular 10X, objective 40X).

(Guinta et al., 1993)
Table 3- Analysis of variance for grain yield and its components and harvest index (HI) in wheat cultivars under non-stress and stress conditions.

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>df</th>
<th>Replication (R)</th>
<th>Irrigation (I)</th>
<th>Ea</th>
<th>Cultivar (C)</th>
<th>E b</th>
<th>Replication (R) × Cultivar (C)</th>
<th>Irrigation (I) × Cultivar (C)</th>
<th>Ea × Cultivar (C)</th>
<th>E b × Cultivar (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spike/ m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grain per spike</td>
<td>1000 grain weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>239459.90 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>243.55 *</td>
<td>36.66 **</td>
<td>3729.03 *</td>
<td>467893.25 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>239459.90 **</td>
<td>4415.67 **</td>
<td>1468855.35 **</td>
<td>5689757.53 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9644.53</td>
<td>6.65</td>
<td>3034.76</td>
<td>67501.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8366.46 **</td>
<td>657.81 **</td>
<td>9651.16 **</td>
<td>73635.79 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128</td>
<td>40.53 **</td>
<td>34.14 **</td>
<td>657.81 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10650.08 **</td>
<td>45.03 **</td>
<td>4573.17 **</td>
<td>86953.48 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4817.68</td>
<td>49.57</td>
<td>7.59</td>
<td>45976.07</td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% probability levels, respectively.

ns: Non-significant.
Ludlow et al., 1983.}

Morgan, 1980.

Hsiao et al., 1976.

Quarrie and Jones, 1977; Morgan, 1980; Coogrove, 1980.

Pierce and Raschke, 1980.

Morgan, 1980.

Hsiao et al., 1976.

Morgan, 1980.

Pierce and Raschke, 1980.

Hsiao et al., 1976.

Morgan, 1980.

Morgan, 1980.
Table 4. Grouping of bread wheat cultivars into capable and incapable for osmoregulation based on the ratio of projected pollen area under 50% to 30% PEG solutions and their corresponding grain yield.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Grain yield (g/m²)</th>
<th>Projected pollen area (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEG 50%</td>
<td>PEG 30%</td>
</tr>
<tr>
<td>Incapable for Osmoregulation</td>
<td>149.44</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>1.69</td>
<td>0.91</td>
</tr>
<tr>
<td>Capable for Osmoregulation</td>
<td>262.88</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>1.62</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Table 5. Correlation coefficients between projected pollen grains area, grain yield and harvest index in bread wheat cultivars under non-stress and drought stress conditions.

<table>
<thead>
<tr>
<th></th>
<th>Harvest Index</th>
<th>Projected pollen area under 30% PEG solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Stress condition</td>
<td>Drought stress condition</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.36**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04 ns</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.63**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.29**</td>
</tr>
</tbody>
</table>

* and **: Significant at 5% and 1% probability levels, respectively. ns: Non-significant.

Table 6. Mean of yield components of capable and incapable bread wheat cultivars for osmoregulation under non-stress and drought stress conditions.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Grain per spike (g/m²)</th>
<th>Number of Grains per Spike (1000)</th>
<th>1000 Grain Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-stress</td>
<td>Capable for Osmoregulation</td>
<td>497.79</td>
<td>44.33</td>
</tr>
<tr>
<td></td>
<td>Incapable for Osmoregulation</td>
<td>235.89</td>
<td>39.88</td>
</tr>
<tr>
<td>Drought</td>
<td>Capable for Osmoregulation</td>
<td>471.63</td>
<td>43.25</td>
</tr>
<tr>
<td></td>
<td>Incapable for Osmoregulation</td>
<td>188.11</td>
<td>27.87</td>
</tr>
</tbody>
</table>
References

Agric. & Biol. 4: 604-605.

Assessment of osmoregulation capability in bread wheat (Triticum aestivum L.) cultivars using response of projected pollen grains to drought stress

Maghsoudi, K.¹ and A. A. Maghsoudi Moud²

ABSTRACT

In this study thirty three wheat cultivars were compared for osmoregulation capability using the ratio of projected pollen grains area under water stress to normal conditions. Digital images of pollen grains obtained from plants grown under well watered condition, were analyzed to obtain their projected areas. Field experimental arranged in a split-plot (cultivars were assigned to sub-plots and drought stress to main plots) in order to compare cultivars grain yield under water stressed and well watered conditions. Based on the results of pollen area ratio, cultivars were divided into two groups. Cultivars, Dez, Kavir, Roshan, Back Cross Roshan (winter type), Zarrin, Pishtaz, Omid and Alvand were classified as capable for osmoregulation as they had a ratio of higher than unit, while the others were grouped as incapable since had ratio lower than unit. Results of ANOVA showed that drought stress and cultivar had significant effects on grain yield and its components as well as biological yield and harvest index. In general, drought stress significantly reduced the grain yield. On the other hand, average grain yield of osmoregulation capable group was 1.73 times greater than that of incapable group. Meanwhile, significant correlation coefficient \(r = 0.29^{**} \) was found between projected pollen area and grain yield under drought stress condition, implying that increased grain yield could be attributed to osmoregulation capability. Wheat cultivars grouped as capable for osmoregulation are suggested to be used in breeding programs for increasing drought tolerance.

Key words: Osmoregulation, Pollen grain, Water stress, Bread wheat.

Received: October 2007
1- M.Sc. Student, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran (Corresponding author)
2- Assistant Professor, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran