Identification of salinity tolerance in sorghum germplasm in National Plant Gene Bank of Iran

محمد رضا عباسی و علیرضا نخسروی

چکیده

عباسی، م.ر.و.ع.ر.خ. فروش. شناسایی منابع تحمل به نش شوری در دسته‌سوم سورق‌گوم باکت زن گیاهی ملی ایران. مجله علمی زورام، 19.

این پژوهش به هدف گرفتن نواده‌های سرچشمه موجود در دسته‌سوم گیاهی ملی ایران در شرایط نش شوری به منظور دستیابی به منابع زنده‌کننده نش شوری در این محصول انجام گردید. نتایج نشان داد که در سه حالت مختلف تهیه شده، یکی از نواده‌های موجود در دسته‌سوم گیاهی ملی ایران در شرایط نش شوری قابل قبول بود.*

۰۵۱۵۸-۵۲-۲۱-۰۰۱-۰۰۱

mail: rezaabbasi@yahoo.com

1-

واژه‌های کلیدی: سورق‌گوم، نش شوری، نواده، تحمیل، حساسیت.
توجه بگیرید که همه جملات در زیر به صورت ترجمه شده اند و نیاز به مطالعه کامل اصلی دارد.

بپرزیست توده درست یافت. در بررسی بر روی درصد جوانه زنی و وزن خشک گیاهچه (اندازه‌های هواپیمایی)، روز از کاشت مشخص سیاه‌که سطح مختلف شوری اثر مشابه بر جوانه‌زی و وزن خشک گیاهچه هر رقم دارد. البته غلظت‌های بالایی شوری (دستی زیمنس بر متر) اثر زیبایی‌رای بر این صفات در کلیه ارقام نشان دادند (Van Hoorn et al., 1999). وان هورن و همکاران در بررسی اثر خاک در طی مراحل جوانه زنی و رشد اولیه گیاهچه سرورگوم ملاحظه نمودند که مراحل اولیه خاک (جویان زنی) در مقایسه مراحل بعدی و یک حکم بیشتر نسبت به شوری دارد. بورسیر و همکاران (Boursier et al., 2005) در بررسی اثر نشان دادند که در سرورگوم محله جوانه زنی و استقرار از بقیه مراحل رشد به شوری حساس‌تر (Fouman and Majidi Hervan, 1992; Krishnamurthy et al., 2003) در اسفاره زراعی سرورگوم با تزیین عملکرد کیفی مدت نشان کرده شد. نشان‌برای راهکارهایی که کمیت و کیفیت عملکرد ادامه‌های و دانه ارزیابی شدند و توزیع در واکنش کیهانی کامل سرورگوم به عنوان بهترین شاخه اصلی شناسایی زیتونیت‌ها نسبت به واکنش‌های تنش شوری در نظر کرده شد. در این اساس غربال زمینی پلاستیکی برای تنش شوری در ICARAT سرورگوم برای تنش شوری در خاک و در مراحل قبل از کلیده‌های انجام شده است (Krishnamurthy et al., 2003).

تغییرات زنبوری برای اغلب صفات زراعی و مورفولوژیکی توانستند در پایان های فیزیولوژیکی نمونه‌های نسبت به یک تنش ورده دخالت داشته باشند. تنویز زنبوری سیار

پلاستیکی
در این رابطه‌ها YS و YP به ترتیب عامل‌کاهش در شرایط نشان (مزرعه صدری فرد) و شاهد (مزرعه حرشتان) نشان می‌دهد. در مباحثات امرازی از آن‌ها استفاده نشده، زیرا نتایج نبردهای مشابه به منحی نرم‌می‌باشد. در نتیجه، شاهد های اصلی (شاخه‌های حاشیه و پنجره) حاصل گردید. مواد بر اساس مقادیر جدیدی در نتایج جهت تحقیقات تکمیلی دسته‌بندی نشدن. در نتیج، نشان داده شد که $SI = 1 - \left(\frac{YS}{YP} \right)$ و $SSI = \frac{1}{SI}$ و $STI = \frac{(YP)(YS)}{YP^2}$

نتایج و بحث
پارامتر های اماری صفات مختلف کلکسیون شوری از شرایط بافت و تنش در جدول‌ها ارائه شده است. مقایسه نتایج حاصل از دو مزرعه نشان داد که همچنان که می‌شود در مزرعه شاهد از Y توده کشیده شده Y توده سبز شده و فقط یکی از توده‌های SI توده سبز درصد سبز خوبی را از STI درصد نشان داده و اکثر توده‌ها درصد سبز بالایی داشتند که در مزرعه نشان حاصل است. میزان نمودار گردید در صورت افزایش گردید و در صورتی که رنگ آمیزی جهت برای کامل نشان نشان شود توده هایی از همان توده گردید. در نتیجه، نشان داده شد که SI یا نشان‌های هدف به‌طور موثر تقریباً SI و STI در برخی صفات مختلف پایداری توانسته باشد. از هر چهار نقطه SI و STI در صفت‌ها مانند SI و STI از SI و STI به‌طور خاص در برخی صفات مختلف پایداری توانسته باشد. از هر چهار نقطه SI و STI در صفت‌ها مقابل، از این نتایج، نشان داده شد که SI و STI در صفت‌ها مانند SI و STI از SI و STI به‌طور خاص در برخی صفات مختلف پایداری توانسته باشد. از هر چهار نقطه SI و STI در صفت‌ها مقابل، از این نتایج، نشان داده شد که SI و STI در صفت‌ها مقابل، از این نتایج، نشان داده شد
Table 1. Statistical parameters of distribution and center tendency of agro-morphological traits in sorghum germplasm of National Plant Gene Bank in stressed (S) and non-stressed (NS) conditions

<table>
<thead>
<tr>
<th>Traits*</th>
<th>Valid data</th>
<th>NS</th>
<th>S</th>
<th>NS</th>
<th>S</th>
<th>NS</th>
<th>S</th>
<th>NS</th>
<th>S</th>
<th>NS</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (%)</td>
<td>142</td>
<td>142</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>87.7</td>
<td>52.64</td>
<td>1.4</td>
<td>1.79</td>
<td>100</td>
<td>30.18</td>
</tr>
<tr>
<td>NPP</td>
<td>142</td>
<td>119</td>
<td>1</td>
<td>23</td>
<td>18.2</td>
<td>3</td>
<td>0.4</td>
<td>0.2</td>
<td>17.5</td>
<td>3.13</td>
<td>4.78</td>
</tr>
<tr>
<td>PH (cm)</td>
<td>142</td>
<td>117</td>
<td>1</td>
<td>25</td>
<td>138.6</td>
<td>60.33</td>
<td>2.12</td>
<td>2.3</td>
<td>137.5</td>
<td>35.2</td>
<td>25.22</td>
</tr>
<tr>
<td>PYF (g)</td>
<td>142</td>
<td>142</td>
<td>1</td>
<td>0</td>
<td>3594</td>
<td>262.59</td>
<td>88.93</td>
<td>20.1</td>
<td>3000</td>
<td>338.79</td>
<td>1059.74</td>
</tr>
<tr>
<td>SPY (g)</td>
<td>142</td>
<td>119</td>
<td>1</td>
<td>23</td>
<td>225.6</td>
<td>119.59</td>
<td>9.04</td>
<td>5.95</td>
<td>312.5</td>
<td>91.82</td>
<td>107.7</td>
</tr>
<tr>
<td>DF</td>
<td>129</td>
<td>53</td>
<td>14</td>
<td>89</td>
<td>80.3</td>
<td>65.35</td>
<td>1.15</td>
<td>2.27</td>
<td>80</td>
<td>23.28</td>
<td>13.04</td>
</tr>
<tr>
<td>NLP</td>
<td>142</td>
<td>112</td>
<td>1</td>
<td>30</td>
<td>13.8</td>
<td>9.97</td>
<td>0.24</td>
<td>0.23</td>
<td>12</td>
<td>3.45</td>
<td>2.82</td>
</tr>
<tr>
<td>WB</td>
<td>142</td>
<td>118</td>
<td>1</td>
<td>24</td>
<td>4.9</td>
<td>4.41</td>
<td>0.12</td>
<td>0.14</td>
<td>5</td>
<td>2.16</td>
<td>1.43</td>
</tr>
<tr>
<td>NTP</td>
<td>142</td>
<td>122</td>
<td>1</td>
<td>20</td>
<td>4.1</td>
<td>2.77</td>
<td>0.13</td>
<td>0.09</td>
<td>3.5</td>
<td>1.4</td>
<td>1.55</td>
</tr>
<tr>
<td>SD(mm)</td>
<td>141</td>
<td>99</td>
<td>2</td>
<td>43</td>
<td>19.2</td>
<td>16.92</td>
<td>0.89</td>
<td>0.44</td>
<td>16.975</td>
<td>6.19</td>
<td>10.6</td>
</tr>
<tr>
<td>PHR(cm)</td>
<td>142</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>87.8</td>
<td>-</td>
<td>-</td>
<td>2.05</td>
<td>93</td>
<td>-</td>
<td>24.45</td>
</tr>
<tr>
<td>DM</td>
<td>120</td>
<td>23</td>
<td>-</td>
<td>102.5</td>
<td>105</td>
<td>-</td>
<td>84</td>
<td>-</td>
<td>91.6</td>
<td>-</td>
<td>82.5</td>
</tr>
<tr>
<td>PW(cm)</td>
<td>126</td>
<td>60</td>
<td>17</td>
<td>82</td>
<td>8.3</td>
<td>4.64</td>
<td>0.27</td>
<td>0.2</td>
<td>6</td>
<td>2.18</td>
<td>2.99</td>
</tr>
<tr>
<td>PL (cm)</td>
<td>126</td>
<td>60</td>
<td>17</td>
<td>82</td>
<td>19.4</td>
<td>12.79</td>
<td>0.73</td>
<td>0.55</td>
<td>8.5</td>
<td>6.05</td>
<td>8.18</td>
</tr>
<tr>
<td>GW(g)</td>
<td>133</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>1.85</td>
<td>-</td>
<td>0.16</td>
<td>-</td>
<td>1.15</td>
<td>-</td>
<td>1.84</td>
</tr>
<tr>
<td>BYSP(g)</td>
<td>141</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>510.9</td>
<td>-</td>
<td>26.64</td>
<td>-</td>
<td>162.5</td>
<td>-</td>
<td>316.36</td>
</tr>
<tr>
<td>CC a</td>
<td>142</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>0.68</td>
<td>-</td>
<td>40.5</td>
<td>-</td>
<td>8.16</td>
</tr>
<tr>
<td>CC b</td>
<td>142</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.68</td>
<td>-</td>
<td>40.5</td>
<td>-</td>
<td>8.16</td>
</tr>
<tr>
<td>FLA</td>
<td>142</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>184.9</td>
<td>-</td>
<td>10.52</td>
<td>-</td>
<td>71.9</td>
<td>-</td>
<td>125.35</td>
</tr>
</tbody>
</table>

*: E= Emergence, NPP= No. of plant/plot, PH= Plant height at flowering (cm), PYF= Plot yield at the first cut, SPY= Single plant yeild at first cut, DF= Days to 50% flowering, NLP= No. of leaf /plant, WB= Waxy bloomy, NTP= No. of tiller/plot, SD= Stem diameter, PHR = Plant height at regrowth , DM= Days to maturity, PW= Panicle width, PL= Panicle length (cm), GW= 100-grain weight, BYSP= Biological yield of single plant, CC a and b= Chlrophyl a, b content, FLA= Flag leaf area
در کارارش عباسی (2007) ارائه کردیده است.

در تیپ سورکوم های وحیشی شاخص STI عملکرد بیولوژیکی تک بوته از صفر تا در نتیجه 04TN0076، 04TN0074 کاهش درصدی رونده سه شنبه مشاهده شد که کاهش شدید ناشی از اثر شرایط استفاده شده یک مزرعه بود.

میزان معیار بیولوژیکی تک بوته در چندین بار مزرعه شاهد و مزرعه تنش به

روز آگاهی از رژیم رژیم اکثریتی روز

تعیین می‌کرد در صورتی که در مزرعه فقط تعادل

توپه که بک رفتند که مانند این توهنها ها رو

بود و مقایسه با میانگین مزرعه شاهد (روز)

نشان دهنده این موضوع است که فقط توهن

زودرس توانسته بودند دوره زایمان را تکمیل کنند.

توههی دیروز توانسته حقیقتی برندی دیبل آن ممکن است این باشد که هر چه غیب تعادل روز

٢٣ مقاوم در زمین باقی ماند با توجه به افزایش شوری

خاک (و نامساعد بودن شرایط محیطی). تجربه بیان

که انسان بودن در نهایت از بین می رفته در مزرعه شور

آتار تنش های از قبل سوختگی له برگ ها از اکثر

کیا ها نه متفاوت می باس که خوبی قابل روندت بود و در نهایت

تعادل اکتشف شماری از کیا ها در این مزرعه در

برخی از توهنها با پیش رویدن. از انجا که تعادل

توهه تجمیع مراحل رشد تا رسیدن دانه را در مزرعه

شاهد. کامل نمودن و این تعداد در مزرعه تحت تنش به

ماتریک کنترل رود یک اصل تنهای عملکرد بیولوژیکی

تک بوته میکرو از همین ارتقاء یکاه در کلیدی که

از اجزای عملکرد علوفه می باشد. جهت استفاده در

محاسبات اماری استفاده شدند.

مقایسه شاخص های یک اورده کننده تنش در کلکسیون

STI

مقدار این شاخص هرچه کمتر باشد زمین مورد

ازبرایی به تنش متحمل تره حساد بر این اساس در

سورگوم های شه، وحیشی توهن های و

04TN0024 و 04TN0023 و

04TN0017

04TN00141 ICRISAT IS2302

شناخت حساسیت به خشکی

مقدار این شاخص هرچه کمتر باشد زمین مورد

ازبرایی به تنش متحمل تره حساد بر این اساس در

سورگوم های شه، وحیشی توهن های و

04TN0024 و 04TN0023 و

04TN0017

04TN00141 ICRISAT IS2302

شناخت حساسیت به خشکی

مقدار این شاخص هرچه کمتر باشد زمین مورد

ازبرایی به تنش متحمل تره حساد بر این اساس در

سورگوم های شه، وحیشی توهن های و
می‌شود. اینچه که از این جدول بر می‌آید این است که: منشاء واحدها برای تهیه متدول در داخل کشور نیم توان ایفا داد و هر مقدار خاصی که در کنار یکدیگر وجود داشت باشد، از طرف تعداد از تهیه متدول و با حساسیت خارج کشور به جمله ایالت‌های جهانی سودان، سوریه، هند و لبنان دارد. قابل ذکر است فقط در تپ جارویی و نیمه جارویی تمامی تهیه‌های متدول و با حساسیت مشابهی تهیه‌های دو دی‌های حدود مقدار 04TN0018 از تهیه‌های متدول IS18758 برای اثر پودره که استفاده شده در آزمایش کلسیک‌سازی (پودره) نیز می‌شود.

مطالعات نیز جواب مشابهی نشان دادند. مثلاً تهیه 04TN0114 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 از تهیه‌های متدول IS18758. تهیه 04TN0150 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 و در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 هر دو دی‌های حدود مقدار 04TN0018 از تهیه‌های متدول IS18758 برای اثر پودره که استفاده شده در آزمایش کلسیک‌سازی (پودره) نیز می‌شود.

مطالعات نیز جواب مشابهی نشان دادند. مثلاً تهیه 04TN0114 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 از تهیه‌های متدول IS18758. تهیه 04TN0150 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 و در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 هر دو دی‌های حدود مقدار 04TN0018 از تهیه‌های متدول IS18758 برای اثر پودره که استفاده شده در آزمایش کلسیک‌سازی (پودره) نیز می‌شود.

مطالعات نیز جواب مشابهی نشان دادند. مثلاً تهیه 04TN0114 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 از تهیه‌های متدول IS18758. تهیه 04TN0150 در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 و در مقایسه با استفاده از 04TN0009 در STI مقدار کمتری از 04TN0018 هر دو دی‌های حدود مقدار 04TN0018 از تهیه‌های متدول IS18758 برای اثر پودره که استفاده شده در آزمایش کلسیک‌سازی (پودره) نیز می‌شود.
Table 2. Tolerant and susceptible sorghum germplasm - using stress susceptibility (SSI) and stress tolerance (STI) indices based on the first cutting biological yield (Y) and plant height (Ph) in different sorghum types with different origin

<table>
<thead>
<tr>
<th>Accession number</th>
<th>Susceptibility</th>
<th>STI</th>
<th>SSI</th>
<th>PH</th>
<th>Y</th>
<th>PH</th>
<th>Y</th>
<th>Origin</th>
<th>Country/Province</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>04TN0009</td>
<td>Tolerant</td>
<td>0.32</td>
<td>0.86</td>
<td>1.01</td>
<td>0.82</td>
<td></td>
<td></td>
<td>Sistan and Baluchestan</td>
<td>Saravan</td>
<td>Saravan</td>
</tr>
<tr>
<td>04TN0038</td>
<td>Tolerant</td>
<td>0.17</td>
<td>0.55</td>
<td>1.01</td>
<td>0.70</td>
<td></td>
<td></td>
<td>Kerman</td>
<td>Kerman</td>
<td></td>
</tr>
<tr>
<td>04TN0050</td>
<td>Susceptible</td>
<td>0.27</td>
<td>0.24</td>
<td>1.01</td>
<td>1.36</td>
<td></td>
<td></td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>04TN0033</td>
<td>Susceptible</td>
<td>0.08</td>
<td>0.15</td>
<td>1.07</td>
<td>1.54</td>
<td></td>
<td></td>
<td>USA</td>
<td>USA</td>
<td></td>
</tr>
</tbody>
</table>

04TN0078	Tolerant	0.08	0.5	0.96	0.08			Yazd	Tabas
04TN0049	Tolerant	1.58	0.18	1.06	1.58			Unknown	unknown
04TN0102	Tolerant	1.6	0.1	1.08	1.6			Mazandaran	Mazandaran
04TN0004	Susceptible	0.69	0.48	0.9	0.69			Syria	Syria
04TN0108	Susceptible	0.82	0.55	1.04	0.82			Bushehr	Bushehr

KC90002	Tolerant	0.38	0.61	2	0.78			Sistan and Baluchestan	Sistan and Baluchestan	
04TN0005	Tolerant	0.16	0.54	1.01	1.15			Syria	Syria	
04TN0191	Tolerant	0.2	0.26	1.03	0.78			Sudan	Sudan	
04TN0181	Tolerant	0.02	0.17	1.06	1.41			Lebanon	Lebanon	
04TN0034	Tolerant	0.28	0.21	0.86	1.29			USA	USA	
KC900006	Susceptible	0.1	0.41	6	0.85			Sistan and Baluchestan	Chabahar	
KC90015	Susceptible	0.5	0.41	5	0.96			Markazi	Markazi	Delijan

Downloaded from agrobreedjournal.ir at 9:44 +0330 on Sunday October 6th 2019
<table>
<thead>
<tr>
<th>Accession number</th>
<th>Susceptibility</th>
<th>STI</th>
<th>SSI</th>
<th>Country/Province</th>
<th>Origin</th>
<th>*City</th>
</tr>
</thead>
<tbody>
<tr>
<td>04TN0042</td>
<td>Tolerant</td>
<td>2.91</td>
<td>0.86</td>
<td>1.00</td>
<td>0.85</td>
<td>Fars Fasa</td>
</tr>
<tr>
<td>04TN0018</td>
<td>Tolerant</td>
<td>0.59</td>
<td>0.73</td>
<td>0.95</td>
<td>0.69</td>
<td>Yazd Tabas</td>
</tr>
<tr>
<td>04TN0039</td>
<td>Tolerant</td>
<td>1.31</td>
<td>0.74</td>
<td>0.95</td>
<td>0.96</td>
<td>Sistan and Baluchestan Iranshahr</td>
</tr>
<tr>
<td>04TN0113</td>
<td>Tolerant</td>
<td>1.65</td>
<td>0.45</td>
<td>0.99</td>
<td>1.15</td>
<td>Bushehr Dashtestan</td>
</tr>
<tr>
<td>04TN0150</td>
<td>Tolerant</td>
<td>0.35</td>
<td>0.31</td>
<td>0.51</td>
<td>1.08</td>
<td>India IS4242</td>
</tr>
<tr>
<td>04TN0187</td>
<td>Tolerant</td>
<td>0.31</td>
<td>0.15</td>
<td>0.69</td>
<td>1.18</td>
<td>Ethiopia IS18758</td>
</tr>
<tr>
<td>04TN0071</td>
<td>Susceptible</td>
<td>0.43</td>
<td>0.28</td>
<td>1.07</td>
<td>1.49</td>
<td>Kerman</td>
</tr>
<tr>
<td>04TN0083</td>
<td>Susceptible</td>
<td>1.1</td>
<td>0.53</td>
<td>0.94</td>
<td>0.75</td>
<td>Fars Fars</td>
</tr>
<tr>
<td>04TN0070</td>
<td>Susceptible</td>
<td>0.59</td>
<td>0</td>
<td>1.04</td>
<td>1.79</td>
<td>Sistan and Baluchestan Ishahr</td>
</tr>
<tr>
<td>04TN0167</td>
<td>Susceptible</td>
<td>0.33</td>
<td>0.06</td>
<td>0.73</td>
<td>1.02</td>
<td>southern Khorasan Birjand</td>
</tr>
</tbody>
</table>

Table 2: Continued.

<table>
<thead>
<tr>
<th>Accession number</th>
<th>Susceptibility</th>
<th>STI</th>
<th>SSI</th>
<th>Country/Province</th>
<th>Origin</th>
<th>*City</th>
</tr>
</thead>
<tbody>
<tr>
<td>04TN0115</td>
<td>Tolerant</td>
<td>4.37</td>
<td>0.93</td>
<td>0.94</td>
<td>0.62</td>
<td>Yazd Taft</td>
</tr>
<tr>
<td>04TN0101</td>
<td>Tolerant</td>
<td>1.13</td>
<td>0.91</td>
<td>0.96</td>
<td>0.63</td>
<td>Golestan Gonbad Kavoos</td>
</tr>
<tr>
<td>04TN0114</td>
<td>Tolerant</td>
<td>0.41</td>
<td>0.43</td>
<td>0.76</td>
<td>0.76</td>
<td>Northern Khorasan Birjand</td>
</tr>
<tr>
<td>04TN0089</td>
<td>Tolerant</td>
<td>0.6</td>
<td>0.64</td>
<td>0.94</td>
<td>0.53</td>
<td>Ilam Ilam</td>
</tr>
<tr>
<td>04TN0014</td>
<td>Susceptible</td>
<td>0.38</td>
<td>0.32</td>
<td>1.06</td>
<td>1.23</td>
<td>Qom Qom</td>
</tr>
<tr>
<td>04TN0103</td>
<td>Susceptible</td>
<td>0.73</td>
<td>0.14</td>
<td>1.01</td>
<td>1.52</td>
<td>Kerman Baft</td>
</tr>
<tr>
<td>04TN0112</td>
<td>Susceptible</td>
<td>0.44</td>
<td>0.12</td>
<td>0.99</td>
<td>1.44</td>
<td>Golestan Gonbad Kavoos</td>
</tr>
</tbody>
</table>

* or Accesion number of ICRISAT sorghum collection
Fig. 1. Distribution of semi-wild sorghum accessions in biplot using SSI and STI for the first cutting yield (numbers in the plot indicate accession number in Gene Bank)
Fig. 1. Distribution of grass sorghum accessions in biplot using SSI and STI for the first cutting yield
(numbers in the plot indicate accession number in Gene Bank)

Fig. 1. Distribution of grainy sorghum accessions in biplot using SSI and STI for the first cutting yield
(numbers in the plot indicate accession number in Gene Bank)
Fig. 1. Distribution of forage-sugary sorghum accessions in biplot using SSI and STI for the first cutting yield (numbers in the plot indicate accession number in Gene Bank)
Fig. 1. Distribution of broom sorghum accessions in biplot using SSI and STI for the first cutting yield (numbers in the plot indicate accession number in Gene Bank).

STI and SSI have been used for selecting the best materials for breeding programs. The correlation between SSI and STI was investigated by Narouie et al. (2008) and Shams et al. (2014). The Pearson correlation coefficient between SSI and STI was found to be 0.87 (Shams et al., 2014) and -0.787 (Narouie et al., 2008). Roselle and Hamblin (1981) suggested that the correlation coefficient between SSI and STI should be high to ensure the selection of materials with high yield potential.
Table 3. Correlation coefficients between stress susceptibility (SSI) and stress tolerance (STI) indices with biological yield in the stressed and non-stress conditions.

<table>
<thead>
<tr>
<th>Traits</th>
<th>STI</th>
<th>SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PH</td>
<td>Y</td>
</tr>
<tr>
<td>PYNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHS</td>
<td>0.042**</td>
<td>0.258**</td>
</tr>
<tr>
<td>PYS</td>
<td>0.082**</td>
<td>0.054ns</td>
</tr>
<tr>
<td>SSIIY</td>
<td>0.068**</td>
<td>0.141*</td>
</tr>
<tr>
<td>SSIPH</td>
<td>0.063**</td>
<td>-0.106ns</td>
</tr>
<tr>
<td>STIY</td>
<td>0.472**</td>
<td>0.168**</td>
</tr>
<tr>
<td>STIPH</td>
<td>0.039ns</td>
<td>0.372**</td>
</tr>
<tr>
<td>PHNS</td>
<td>0.264**</td>
<td></td>
</tr>
</tbody>
</table>

and **: Significant at the 5% and 1% probability levels, respectively

ns: Non-significant

شناسایی منابع تحمل به نشان شوری در

ارزش منابع زنتیکی سوئکوم بومی کشور جدیدت تا گذشته

عملکرد بیولوژیکی تک بوته پیشنهاد می‌شود.

نتایج این تحقیق نشان داد که زورم بالاسم مورد بررسی می‌تواند عناوین و الگونی متحمل به شوری در برناهای مهارتی تپ‌هایی مقاومت سوئکوم براوی‌ها از منطقه مختلف کشور مورد استفاده قرار گیرد. این پیشنهاد می‌شود بررسی های مولکولی سازگاری عناوین تحميل در نمونه‌های حساس و متحمل به شوری در این زورم بالاسم در برناهای تحقیقات تکمیلی مد نظر قرار گیرد.

سپاسگزاری

نگارندگان مراحل سیاست و قدردانی کنونی از مدیریت محتی‌های مرکز تحقیقات کشاورزی خراسان رضوی به ویژه استعداد تحقیقات پسته فیش آباد تربت حیدریه و همچنین مدیریت محتی‌های بخش تحقیقات زنگیکایی و یکانک خود از راه اندازی این پروژه به جهت فراهم کردن یکی از مناسب برای انجام این تحقیق و جنب آقای عباس‌نافزون مهربان بوده‌است و به جهت زحمات قرار گرفته در طول اجرای تحقیق، اعلام می‌کنند.

References

Identification of salinity tolerance in sorghum germplasm in National Plant Gene Bank of Iran

Abbasi1, M. R. and A. R. Nakhfroush2

ABSTRACT

In order to screen sorghum germplasm in National Plant Gene Bank of Iran for salinity tolerance, 142 sorghum accessions from five different types were planted in two different field growing conditions. Electronic conductivity (EC) of irrigation water was 2.12 and 14.8 ds/m in non-stress and salinity stress conditions, respectively. Experimental design was Balanced Group Blocks with two replications. The grouping in each block was based on sorghum types (wild, grass, grain, forage, and broom sorghums). This experimental design allowed us to compare sorghum types in order to differentiate and identify the most tolerant and susceptible germplasm. Stress susceptibility index (SSI) and stress tolerant index (STI) based on single plant biological yield and plant height traits were used in the analysis. Based on these indices the tolerant accessions were identified within and between sorghum types. The distribution of tolerant and susceptible accessions in each type was determined by using biplot for SSI and STI. These analyses facilitated the identification of the tolerant germplasm in both local or introduced accessions. These germplasm can be used in sorghum breeding programs for tolerance to salinity. Passport data showed that there was no correlation between the tolerance to salinity and the origin of germplasm. However, the correlation coefficients of STI, SSI, yield and plant height showed a high relationship between STI and the first cutting yield (r = 0.695**), implying that STI is the most suitable index for screening sorghum germplasm for tolerance to salinity stress.

Key words: Sorghum, Salinity stress, Accession, Tolerance and Susceptibility.